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a b s t r a c t

In this paper the feasibility of using a particular feasible direction interior point algorithm for solving reli-
ability-based optimization problems of high dimensional stochastic dynamical systems is investigated.
The optimal design problem is formulated in terms of an inequality constrained non-linear optimization
problem. A class of interior point algorithms based on the solution of the first-order optimality conditions
is considered here. For this purpose, a quasi-Newton iteration is used to solve the corresponding
nonlinear system of equations. Several numerical examples are presented to illustrate the feasibility of
the proposed methodology.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Structural optimization by means of deterministic mathemati-
cal programming techniques has been widely accepted as a viable
tool for engineering design [1,2]. However in many structural engi-
neering applications response predictions are based on models
whose parameters are uncertain. Despite of the fact that traditional
approaches have been used successfully in many practical applica-
tions, a proper design procedure must explicitly consider the ef-
fects of uncertainties as they may cause significant changes in
the global performance of final designs [3–6]. Under uncertain con-
ditions probabilistic approaches such as reliability-based formula-
tions provide a realistic and rational framework for structural
optimization which explicitly accounts for the uncertainties [7–
16]. It is noted that, however, alternative approaches do exist as
well. For example methodologies based on non-traditional uncer-
tainty models can be very useful in a number of cases [17–21].

In the present contribution a reliability-based formulation is
considered. In particular structural design problems involving
dynamical systems under stochastic loadings are analyzed. The
optimization problem is formulated as the minimization of an
objective function subject to multiple design requirements includ-
ing standard deterministic constraints and reliability constraints.
First excursion probabilities are used as measures of system reli-
ability. The corresponding reliability problems are expressed as
multidimensional probability integrals involving a large number

of uncertain parameters. Such parameters describe the uncertain-
ties in the structural properties and excitation.

In the field of reliability-based optimization of stochastic
dynamical systems several procedures have been recently devel-
oped allowing the solution of quite demanding problems [22–
29]. The numerical efforts associated with the solution of this type
of problems is dominated by the reliability assessment step. There-
fore one strategy is to construct approximate representations of
the quantities depending on the uncertain parameters as an expli-
cit function of the design variables [5,24,30,31]. On the other hand,
direct stochastic search algorithms have also proved to be useful
tools for solving challenging stochastic reliability-based optimiza-
tion problems [26,32–34]. While the use of the above optimization
approaches has been found useful in a number of structural opti-
mization problems there is still room for further developments in
this area. It is the objective of this contribution to evaluate the fea-
sibility of using a class of interior point algorithms in the context of
reliability-based optimization problems of high dimensional sto-
chastic dynamical systems. In particular, an optimization scheme
based on the solution of the first-order optimality conditions is
considered here [35–38]. Based on this optimization scheme differ-
ent applications are presented to illustrate the potentially of the
design process in realistic engineering problems.

The organization of the paper is as follows. Section 2 presents
the formulation of the reliability-based optimization problem to
be studied in this contribution. The basic ideas of the optimization
algorithm used in the present formulation are discussed in Sec-
tion 3. Section 4 addresses several implementation and numerical
aspects of the proposed optimization scheme. One test problem
and two application problems are presented in Section 5. The paper
closes with some final remarks.
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2. Description of the problem

2.1. Optimization problem

Consider the following inequality constrained non-linear opti-
mization problem

Minx f ðxÞ
s:t: giðxÞ 6 0; i ¼ 1; . . . ;nc

siðxÞ 6 0; i ¼ 1; . . . ;nr

x 2 X

ð1Þ

where x, xi, i = 1, . . . ,nd is the vector of design variables with side
constraints xl

i 6 xi 6 xu
i ; f ðxÞ is the objective function, gi(x) 6 0,

i = 1, . . . ,nc are the standard constraints, and si(x) 6 0, i = 1, . . . ,nr

are the reliability constraints. It is assumed that the objective and
constraint functions are smooth functions of the design variables.
The objective function f can be defined in terms of initial, construc-
tion, repair or downtime costs, structural weight, structural perfor-
mances, etc. The standard constraints are related to general design
requirements such as geometric conditions, material cost compo-
nents, availability of materials, etc. Finally, the reliability con-
straints are associated with design specifications characterized by
means of reliability measures. Reliability measures given in terms
of failure probabilities with respect to specific failure criteria such
as serviceability and partial or total collapse failure are considered
in the present formulation. Throughout this formulation it is as-
sumed, for simplicity, that the evaluation of the objective function
f(x) and the standard constraint functions gi(x), i = 1, . . . ,nc is
numerically inexpensive, while the evaluation of the reliability con-
straints is considerable more involved. However, objective and
standard constraint functions that are numerically expensive to
evaluate can also be considered in the present formulation. There-
fore, the above formulation is quite general in the sense that differ-
ent stochastic optimization formulations can be considered.

2.2. Reliability measures

For structural systems under stochastic excitation the probabil-
ity that design conditions are satisfied within a particular reference
period T provides a useful reliability measure. Such measure is re-
ferred as the first excursion probability and quantifies the plausi-
bility of the occurrence of unacceptable behavior (failure) of the
structural system. For example, for upper bound constraints of
the responses the failure event F can be defined as F(x,z) = D(x,z/
h) > 1, where D is the so-called normalized demand function de-
fined as

Dðx; z=hÞ ¼maxj¼1;...;l maxt2½0;T�
hjðt;x; zÞ

h�j
ð2Þ

where z 2 Xz � Rnz is the vector of uncertain variables involved in
the problem, hj(t,x,z), j = 1, . . . , l are the response functions associ-
ated with the failure event F, and h�j > 0 is the acceptable response
level for the response hj. In this context the quotient hjðt;x; zÞ=h�j can
be interpreted as a demand to capacity ratio, as it compares the
value of the response hj(t,x,z) with the maximum allowable value
of the response h�j . A similar characterization of the normalized
demand function can be obtained if the constraints of the responses
are given in terms of lower bounds. In this setting, it is clear that the
responses hj are functions of time (due to the dynamic nature of the
excitation), the design variable vector x, and the random vector z.
These functions are obtained from the solution of the equation of
motion that characterizes the structural model. The uncertain
system parameters z are modeled using a prescribed probability
density function p(z). This function indicates the relative

plausibility of the possible values of the uncertain parameters
z 2Xz. It is noted that the vector of uncertain variables describes
all uncertainties involved in the problem, that is, model and loading
parameters.

2.3. Reliability constraints

With the previous notation the reliability constraint functions
are written in terms of failure probability functions as

siðxÞ ¼ PFi
ðxÞ � P�Fi

; i ¼ 1; . . . ;nr ð3Þ

where PFi
ðxÞ is the probability function for the failure event Fi eval-

uated at the design x, and P�Fi
is the target failure probability for the

ith failure event. The failure event Fi is characterized in terms of the
demand function Di as before, where Di(x,z) = D(x,z/hi), and
hi

jðt;x; zÞ; j ¼ 1; . . . ; li are the response functions associated with
the failure event Fi. The failure probability function PFi

ðxÞ evaluated
at the design x can be written in terms of the multidimensional
probability integral

PFi
ðxÞ ¼

Z
Diðx;zÞ>1

pðzÞdx ð4Þ

It is noted that the multidimensional probability integral in-
volves a large number of uncertain parameters (hundreds or thou-
sands) in the context of dynamical systems under stochastic
excitation [39–42]. Therefore, the reliability estimation for a given
design constitutes a high-dimensional problem which is extremely
demanding from a numerical point of view [43–47].

3. Optimization strategy

3.1. General description

A first-order optimization scheme based on feasible directions
is selected in the present implementation. In particular, a class of
feasible direction algorithms based on the solution of the Kar-
ush–Kuhn–Tucker (KKT) first-order optimality conditions is con-
sidered here [36,37]. At each iteration the search direction is a
descent feasible direction of the objective function. A one-dimen-
sional line search is then carried out in order to obtain a new fea-
sible design better than the previous one. The process continues
until convergence is achieved. By construction the method gener-
ates a sequence of steadily improved feasible designs. This class
of algorithms has proved to be quite effective in deterministic opti-
mization problems [48,49]. In fact, a large number of test problems
[50] have been solved very efficiently without any change in the
code and with the same set of parameters that characterizes the
algorithm. In addition validation calculations have shown that
the number of iterations remains comparable when the size of
the problem is increased.

3.2. Basic ideas

3.2.1. Optimality conditions
The KKT first-order optimality conditions corresponding to the

inequality constrained optimization problem (1) can be expressed
as [37]

rf ðxÞ þ rgðxÞkg þrsðxÞks ¼ 0
GðxÞkg ¼ 0; SðxÞks ¼ 0
giðxÞ 6 0; i ¼ 1; . . . ;nc; siðxÞ 6 0; i ¼ 1; . . . ;nr

kg P 0; ks P 0

ð5Þ

where kg 2 Rnc and ks 2 Rnr are the vectors of dual variables,
rgðxÞ 2 Rnd�nc and rsðxÞ 2 Rnd�nr are the matrices of derivatives of
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