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The stochastic subset optimization (SSO) algorithm has been recently proposed for design problems that
use the system reliability as objective function. It is based on simulation of samples of the design vari-
ables from an auxiliary probability density function, and uses this information to identify subsets for
the optimal solution. This paper presents an extension, termed Non-Parametric SSO, that adopts kernel
density estimation (KDE) to approximate the objective function through these samples. It then uses this
approximation to identify candidate points for the global minimum. To reduce the computational effort
an iterative approach is established whereas efficient reflection methodologies are implemented for the

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Reliability-based Optimization (RBO) constitutes a powerful
framework for providing robust optimal solutions for engineering
design problems by explicitly addressing the effects of the model-
ing uncertainties stemming from our incomplete knowledge about
the system state or future excitation events [1-4]. This is estab-
lished by incorporating in the objective function or in the design
constraints reliability measures, typically expressed through the
probability of failure [5]. The latter provides a measure of the plau-
sibility of the occurrence of unacceptable behavior of the system
(frequently termed as “failure”), and is ultimately expressed
through a multi-dimensional integral over the space of uncertain
model parameters where the integrand is the product of the failure
probability conditional on the model parameters and the probabil-
ity of these parameters.

Although RBO problems are commonly formulated by adopting
deterministic objective functions and reliability constraints (e.g.,
[6-8]), they are also frequently defined with the system reliability
as the objective function (e.g., [3,9,10]). The focus of this study is
on applications of the latter type. For such problems, especially
ones including complex system or excitation models, this reliabil-
ity cannot be always evaluated, or efficiently approximated, ana-
lytically in the context of RBO. An alternative approach [2,11] is
to estimate it using stochastic simulation techniques [12], for
example Monte Carlo simulation. This approach offers a high accu-
racy estimation of the system reliability, which makes it appropri-
ate for RBO, but involves, though, an unavoidable estimation error
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and significant computational burden, since a large number of
evaluations of the system-model response are required for each
evaluation of the objective function. These features make the asso-
ciated design optimization a challenging task [2,13].

The Stochastic Subset Optimization (SSO) algorithm was pro-
posed in [14] for such RBO problems that adopt the system reliabil-
ity as objective function and include computationally expensive
numerical models. The algorithm was later extended to general
optimization under uncertainty problems [15] and also efficiently
integrated with sensitivity analysis tools for the model parameters
in [16] and with surrogate modeling approaches in [17]. SSO is
based on simulation of samples of the design variables from an
auxiliary probability density function (treating them as uncertain)
and uses this information to efficiently identify a subset for the
optimal design variables within some predefined class of admissi-
ble subsets. The latter identification requires an optimization, with
respect to some parametric description of the admissible subset
class, for the one that has the smallest volume density of samples.
Even though SSO has been proven efficient for various challenging
optimization problems (e.g., [1,18-20]), it does have two vulnera-
bilities: the identification of the optimal subset involves a chal-
lenging non-smooth optimization problem [16], whereas the
subset identified is the one that has the smallest average value
for the objective function (among the admissible subsets) which
does not always guarantee that it includes the minimum of the
objective function [16].

In this paper an extension of SSO is developed to improve upon
these vulnerabilities. This is established by avoiding the parametric
description of subsets or the search for the one that has the small-
est average value. This new version of the algorithm is termed NP-
SSO (non-parametric SSO). The fundamental difference in NP-SSO
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Nomenclature

RBO reliability based optimization

X design variable vector

X; ith design variable

1y dimension of x

X admissible design space

I{x,0)  indicator function for F (failure)

PH(x) objective function (failure probability)

1 box-bounded search space

P(F)) probability of failure of augmented reliability problem
p(x|F;)  auxiliary (failure) density function for x

p(x,0|F;) auxiliary (failure) density function for x and 6

{x{, 01} jth sample from x_or 6.

{xr0F}  (failure) sample set for {x,0} from p(x,0|F;)

{x,0.} sample set for which the system response is evaluated
during the stochastic sampling process

K(.) kernel

g standard deviation of samples {Xg} for ith design vari-
able N

I subset of I with Pr(x) < cf

o(I"lI)  volume ratio between sets I* and |

H(I"|I) approximation to H(I*|I) using stochastic simulation

{x.} uniform samples in [

n, number of samples in {x,}

Xc initial coordinate system

T transformation between X, and X,

X coordinates of x in X,

0 target volume ratio for §(I*|I) per iteration of NP-SSO

.M (superscript m) mth cluster of {X,} characteristics
..k (subscript k) kth iteration of NP-SSO characteristics

KDE kernel density estimation

X* optimal design solution

0 model parameters

ny dimension of 0

® space of possible values for 0

p(.) probability density function

Pr(X) approximation to objective function through stochastic
simulation

Vi volume of set I

P(Fy) approximation to P(F;) through stochastic simulation

Pr(x) approximation to objective function through NP-SSO

p(0|F;)  auxiliary (failure) density function for 0

N number of samples available from p(x|F;)

{xr} (failure) sample set from p(x|F;)

N number of samples in set {X.0.}

q(.) proposal density for 6 for obtaining samples {6}

h; bandwidth of Kernel for x;

I* box-bounded superset of I

H(I'I)  ratio of average objective function values in I* and I

H(I"|I)  approximation to H(I*|I) using approximation Pr(X)

{X,} uniform samples in I*

o number of samples in {X,}

X rotated coordinate system

C covariance matrix of {X,}

o threshold defining subset I* B

0 maximum acceptable volume ratio for §(I*|I) per itera-
tion of NP-SSO

M number of clusters for {x,}

¢ stopping threshold for H(I*|I)

is that Kernel Density Estimation (KDE) is adopted to approximate
the objective function using the information from the available
samples of the design variables, and to ultimately identify candi-
date points (not subsets) for the global minimum. As it can be chal-
lenging to populate the failure region with samples, especially for
design choices in regions close to the minima of the objective func-
tion, an iterative approach is established to reduce the computa-
tional effort. Through this approach the design variable samples
gradually move from regions with higher values of the objective
function to regions with lower values, to ultimately establish a
higher accuracy KDE approximation in these regions of interest.
Appropriate reflection approaches are introduced for the KDE and
the impact of potential multiple local minima on the computa-
tional framework is also addressed. The comparison to SSO, as well
as challenges for the KDE implementation in high-dimensional
problem are also extensively discussed. In the next section the
RBO problem of interest is reviewed. In Section 3 the general the-
oretical and computational framework for the NP-SSO algorithm is
presented and then in Section 4 the proposed iterative approach to
increase computational efficiency is discussed. Then the NP-SSO
algorithm is reviewed in Section 5 and in Section 6 it is illustrated
in an example considering the optimization of a base-isolation pro-
tective system for a three story structure.

2. Reliability based optimization problem

Consider a system that involves some controllable parameters
that define its design, referred to as design variables and let
X = [X1X3 X, ] € X C R™ be the design vector where X denotes
the bounded admissible design space. Let @ = [610, - - - 0,,] lying in
® C R™ be the vector of uncertain model parameters for the
system, where ® denotes the set of their possible values. A PDF

(probability density function) p(@), which incorporates our avail-
able knowledge about the system and its excitation, is assigned
to these parameters. This PDF is assumed here independent of x,
though the approach can be directly extended [2] to cases where
the latter is not true [simply substitute p(0|x) for p (8)]. The failure
probability for a given choice of the design variables is then [5]:

Pr(x) = /@ I(%, 0)p(0)do (1)

where I{X,0) is the indicator function for event F (frequently char-
acterized as system failure), which equals one if event F occurs for
the system that corresponds to {x,60} and zero if it does not. Com-
monly a limit state function g(x,0) is introduced to describe F
through some appropriate convention, for example, g(x,0) >0 < F.
Ultimately calculation of I{x,0) requires evaluation of the system
response to estimate gi(x,0).

As discussed in the introduction, we are interested here in the
minimization problem:

min Pg(x)
given f.(x) > 0

@)

where f{x) is a vector of deterministic constraints. An equivalent
formulation of this problem is

X* = arg minPg(X) 3)
xeX

where the constraints are taken into account by appropriate defini-
tion of the admissible design space X.

Using stochastic simulation the objective function for (3) can be
calculated as

4)

~ 1 X i 0]
Br(x) = n—[;h(xﬂ’)ZE 0,;
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