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a b s t r a c t

No spectral representation-based methodology exists to simulate non-stationary and non-Gaussian sto-
chastic processes. This is due to the inability to determine a unique evolutionary spectrum (ES) for a pro-
cess with known non-stationary autocorrelation. Here, a framework is developed to estimate
evolutionary spectra for non-Gaussian processes so that realizations may be simulated using spectral rep-
resentation. Two cases are considered. First, the non-Gaussian ES is estimated for a process with pre-
scribed Gaussian ES and marginal non-Gaussian probability density function (PDF). In the second case,
a compatible underlying Gaussian ES is estimated for a process with incompatible prescribed non-Gauss-
ian ES and marginal PDF.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Monte Carlo Simulation is the most accurate and robust tech-
nique available for solving certain classes of problems which are
stochastic in nature and involve strong nonlinearities, instabilities,
and/or very large magnitude of the uncertain system parameters.
Monte Carlo Simulation has become much more feasible for solv-
ing increasingly complex problems in recent times due to dramatic
improvements in computational power. Many of these problems
require the generation of sample realizations of stochastic pro-
cesses and fields as input. With this motivation, a number of tech-
niques have been developed to rapidly and accurately simulate
stochastic processes and fields of various types.

However, sample function generation of many processes and
fields is not trivial and, in general, the ease of simulation depends
largely on the nature of the process/field. For instance, several well
established methodologies which are conceptually straightforward
and computationally efficient exist for simulation of stochastic
processes/fields which are both stationary/homogeneous and
Gaussian. Simulation of non-stationary/non-homogeneous and
Gaussian processes/fields is more difficult but possible using meth-
ods such as the Spectral Representation Method (SRM) [1,2] and
Karhunen–Loéve (K–L) expansion [3] among others. Furthermore,
a number of techniques have been developed to simulate station-

ary/homogeneous and non-Gaussian processes and fields such as
those utilizing translation process/field theory (e.g. [4–12]), spec-
tral correction (e.g. [13–15]), and Polynomial Chaos/Hermite Poly-
nomial transformations (e.g. [16–18]) among others. The
aforementioned techniques vary in their accuracy, conceptual sim-
plicity (or complexity), and computational efficiency. A description
of these techniques is beyond the scope of this paper.

To date though, few models exist for simulation of stochastic
processes/fields which are both non-stationary/non-homogeneous
and non-Gaussian-and no such spectral representation-based
model is available. Those models which do exist utilize the polyno-
mial chaos representation and/or Karhunen–Loeve expansion such
as the models proposed by Sakamoto and Ghanem [19,20] and
Phoon et al. [21,22]. The main objective here is to model a general
non-stationary/non-homogeneous and non-Gaussian process/field
as a translation process/field and generating sample functions
using the SRM. As already mentioned, several methods have been
developed to simulate a general stationary/homogeneous non-
Gaussian process/field as a translation process/field (see [4–12]).
However, the extension of these models to simulating non-station-
ary/non-homogeneous processes/fields is not trivial. In fact, there
are significant theoretical barriers to developing such a technique
(even when the prescribed evolutionary power spectral density
(or evolutionary spectrum – ES) and the non-Gaussian marginal
probability density function (PDF) are compatible according to
the non-stationary extension of translation process/field theory
established by Ferrante et al. [23]). This paper addresses these bar-
riers and outlines a new methodology to approximate a general
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non-stationary/non-homogeneous and non-Gaussian process/field
by a non-stationary/non-homogeneous translation process/field.

The paper begins with a review of the theoretical framework
necessary to develop the proposed technique. This starts with a
brief review of the SRM with specific focus on the simulation of
non-stationary/non-homogeneous and Gaussian processes/fields.
Next, translation process/field theory is reviewed with an empha-
sis on its applications to non-stationary/non-homogeneous pro-
cesses/fields. Within this context, the theoretical challenges to
merging these theories and producing a comprehensive model
for non-stationary/non-homogeneous and non-Gaussian pro-
cesses/fields are outlined. Then, a new approximate technique is
introduced which allows the translation, with reasonable accuracy
in most cases, between Gaussian and non-Gaussian evolutionary
spectra. Two cases are considered. The first case (the so-called ‘‘for-
ward’’ problem) involves estimating the non-Gaussian ES from a
known underlying Gaussian ES. The second and practically more
interesting case (herein referred to as the ‘‘inverse’’ problem) in-
volves estimating the underlying Gaussian ES from an arbitrarily
prescribed incompatible (according to translation process/field
theory) pair of non-Gaussian ES and marginal probability density
function (PDF). Once the underlying Gaussian ES has been esti-
mated, the SRM may be used to generate sample realizations of
the process/field.

As a note to avoid ambiguity, stochastic processes and fields
will hereafter be referred to only as processes, although all ideas
and concepts developed are equally applicable to fields.

2. Spectral Representation Method for simulation of Gaussian
and non-stationary stochastic processes

The Spectral Representation Method (SRM) for simulation of
scalar Gaussian and non-stationary processes was first proposed
by Shinozuka and Jan [1]. The SRM relies on the theory of evolu-
tionary power developed by Priestley [24]. Therefore, prior to
introducing the simulation formula itself, a brief review of this the-
ory is provided.

2.1. Evolutionary power spectrum

A general one-dimensional, zero-mean, uni-variate stochastic
process X(t) may be expressed as [24]:

XðtÞ ¼
Z 1

�1
/ðx; tÞdZðxÞ ð1Þ

where Z(x) is an orthogonal process with:

E½jdZðxÞj2� ¼ dlðxÞ ð2Þ

if there exists a family of functions {/(x, t)} and a measure l(x)
such that the autocovariance function Cov(s, t) (equivalently auto-
correlation function ACF, R(s, t)) admits the representation [24]:

Covðs; tÞ ¼ Rðs; tÞ ¼ E½XðsÞXðtÞ� ¼
Z 1

�1
/ðx; sÞ/�ðx; tÞdlðxÞ ð3Þ

where the asterisk denotes the complex conjugate. In general, a
multitude of different families of functions exist such that the pro-
cess may be represented as in Eq. (1). The selection of a family of
functions to represent the process is analogous to the selection of
a basis for a vector space. Therefore, this representation is not un-
ique. For stationary processes, one convenient family of functions
is the complex exponentials:

/ðx; tÞ ¼ eIxt ð4Þ

where I is the imaginary unit and x is the circular frequency, which
provides the well-known spectral representation.

However, the complex exponential family is not valid for repre-
sentation of non-stationary processes. One family of functions
which may be used to represent non-stationary processes that pre-
serves the physically useful concept of frequency is the family of
amplitude modulated complex exponentials given by Priestley
[24]:

/ðx; tÞ ¼ Aðx; tÞeIhðxÞt ð5Þ

The family of functions /(x, t) in Eq. (5) is said to be oscillatory
for some h(x) if the modulating function can be written as [24]:

Aðx; tÞ ¼
Z 1

�1
eIthdHðx; hÞ ð6Þ

with jdH(x,h)j having absolute maximum at h = 0. If h(x) is a single-
valued function of x, then the oscillatory process X(t) may be rep-
resented as:

XðtÞ ¼
Z 1

�1
Aðx; tÞeIxtdZðxÞ ð7Þ

with ACF given by:

Rðs; tÞ ¼
Z 1

�1
Aðx; sÞA�ðx; tÞeIxsdlðxÞ ð8Þ

where s = s � t is referred to as the lag or separation between time
instants s and t.

Given an oscillatory process with the representation in Eq. (7),
the evolutionary power spectrum (or evolutionary spectrum-ES)
is defined as [24]:

dSðx; tÞ ¼ jAðx; tÞj2dlðxÞ ð9Þ

Priestley notes that it is convenient to ‘‘standardize’’ the modulating
function A(x, t) such that A(x,0) = 1. Consequently, the measure
l(x) represents the ‘‘initial spectrum’’ (at t = 0) and jA(x, t)j2 repre-
sents the change in time of the spectrum relative to the initial
spectrum.

It will be assumed here that A(x, t) is a real function and that
l(x) = 1 such that the evolutionary spectrum can be expressed as:

Sðx; tÞ ¼ A2ðx; tÞ ð10Þ

with ACF:

Rðs; tÞ ¼
Z 1

�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sðx; sÞSðx; tÞ

p
eIxsdx: ð11Þ

The basic advantage of the evolutionary spectrum is that it can be
interpreted in the same way as the classical power spectrum – i.e.
power distribution over frequency-for the oscillatory process at
time t assuming that the process is ‘‘semi-stationary.’’ The process
is called semi-stationary [24] if A(x, t) is a slowly-varying function
of t. Specifically, A(x, t) is considered slowly-varying if its Fourier
Transform shown in Eq. (6) is ‘‘highly concentrated’’ in the region
of zero frequency. The width of dH(x,h) is measured by the function
[24]:

BF ðxÞ ¼
Z 1

�1
jhjjdHðx; hÞj ð12Þ

and the process is considered semi-stationary if BF ðxÞ is bounded
for all x. The semi-stationary process has a (functional family spe-
cific) characteristic width BF defined by Priestley [24]:

BF ¼
1

sup
x
ðBF ðxÞÞ

ð13Þ

The absolute characteristic width of the process considers all fami-
lies of functions admitting the representation in Eq. (7) and may be
expressed as:
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