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a b s t r a c t

The objective in this paper is to present some recent developments regarding the subspace iteration
method for the solution of frequencies and mode shapes. The developments pertain to speeding up the
basic subspace iteration method by choosing an effective number of iteration vectors and by the use of
parallel processing. The subspace iteration method lends itself particularly well to shared and distributed
memory processing. We present the algorithms used and illustrative sample solutions. The present paper
may be regarded as an addendum to the publications presented in the early 1970s, see Refs. [1,2], taking
into account the changes in computers that have taken place.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The subspace iteration method was developed by K.J. Bathe [1]
for the solution of frequencies and mode shapes of structures, and
in particular for the earthquake analysis of buildings and bridges
[1–3]. Originally in the 1970s, relatively few eigenpairs were
sought in these solutions, like the lowest 10 to 20 frequencies
and mode shapes, when the model contained a total of 1000 to
10,000 degrees of freedom. However, since its original develop-
ment, the subspace iteration method has been used abundantly
in research and commercial finite element programs for small
and very large finite element systems, and the method has natu-
rally attracted considerable attention for improvements, see for
example Refs. [4–10].

The original development of the method given in Ref. [1] is
based on vector simultaneous iterations, as proposed by Bauer
[11] and Rutishauser [12], but includes the important use of the
Ritz method, the selection of the iteration starting vectors, the
use of an effective number of starting vectors, error measures,
and the Sturm sequence check. Without the use of the Ritz step,
simultaneous vector iterations are not effective. While abundantly
used for frequency and linearized buckling solutions in engineering
and the sciences, the method is also employed in the solution of
random eigenvalue problems [13]. A convergence analysis of the
subspace iteration method is given in Ref. [14].

Two attractive properties of the subspace iteration method are,
firstly, its robustness and efficiency and, secondly, the fact that

using a starting subspace close to the subspace of interest can lead
to a very fast solution. This situation is frequently encountered in
engineering and the sciences, e.g. in optimization problems and
in protein dynamics. We shall focus in this paper on the selection
of the number of iteration vectors and illustrate a third attractive
property, namely, its use in parallelized computations.

Also, as another technique, the Lanczos method can be very effec-
tive, in particular when solving for many frequencies and mode
shapes [15,16]. Initially, the Lanczos method showed instabilities
due to loss of orthogonality of the iteration vectors. However, these
difficulties have been largely overcome and in good implementa-
tions the method can be very efficient [17,18]. A particular asset of
the method is that the computational effort may increase almost lin-
early with the number of eigenpairs sought. This asset can render the
Lanczos method attractive compared to the original subspace itera-
tion method if many eigenpairs need be calculated. Namely, in that
case, the computational effort increases larger than linear in the ori-
ginal subspace iteration method, and this increase can be significant.
The Lanczos method and Bathe’s subspace iteration method (or vari-
ants of these two iterative schemes) are two techniques that, at pres-
ent, are very widely used for the solution of large eigenvalue
problems in finite element analysis. Any noteworthy improvements
to these methods are therefore of interest.

An important step in the subspace iteration method is to estab-
lish effective starting iteration vectors, which also implies to, ide-
ally, use the optimal number of iteration vectors.

Lately much effort has been spent on using parallel processing in
finite element analysis, in shared memory and distributed memory
processing modes. Whereas the Lanczos method (working on indi-
vidual vectors [16]) can intrinsically only be parallelized in the
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factorization of the stiffness matrix and the forward reduction and
back-substitution of the individual vectors, the subspace iteration
method allows in addition the parallel solution of multiple iteration
vectors, which can result in a large computational benefit.

In this paper we first present the subspace iteration method
implying use on a single processor machine and discuss how to
choose an effective number of iteration vectors in structural anal-
yses. While the optimal number must clearly depend on the prob-
lem considered, a good choice can mean a significant reduction in
computational time when many frequencies and mode shapes
shall be computed. Based on the discussion, we arrive at a simple
formula for the selection of a reasonable number of iteration vec-
tors for any solution.

Thereafter, we consider the use of the subspace iteration meth-
od in parallel processing, on shared memory and distributed mem-
ory machines. In a brief discussion, we show how the method lends
itself particularly well to parallel computations.

Finally, we give the results of some illustrative example
solutions.

2. The basic subspace iteration method

The basic equations of Bathe’s subspace iteration method have
been published in Refs. [1,16], but we include them here for com-
pleteness of the presentation. Thereafter we focus on the evalua-
tion of an effective number of iteration vectors.

2.1. The basic equations

Let K and M be the stiffness and mass matrices of a finite ele-
ment system with n degrees of freedom, and consider the general-
ized symmetric eigenvalue problem

Ku ¼ kMu ð1Þ

We seek the smallest p eigenvalues ki, i = 1, . . . ,p, and corresponding
eigenvectors ui, i = 1, . . . ,p, with the ordering

0 < k1 6 k2 6 � � � 6 kp ð2Þ

which satisfy

Kui ¼ kiMui; i ¼ 1; . . . ; p ð3Þ

and the Kronecker delta relationships

uT
i Muj ¼ dij

uT
i Kuj ¼ kidij

ð4Þ

If the smallest eigenvalue is actually equal to zero, a shift can be
used to reach the situation given in Eq. (2) [16]. The basic equations
used in the subspace iteration method are, for k = 1, 2, . . .,

KXkþ1 ¼ MXk ð5Þ
Kkþ1 ¼ XT

kþ1KXkþ1 ð6Þ
Mkþ1 ¼ XT

kþ1MXkþ1 ð7Þ
Kkþ1Q kþ1 ¼Mkþ1Q kþ1Kkþ1 ð8Þ
Xkþ1 ¼ Xkþ1Q kþ1 ð9Þ

In practice, it is effective to order the iteration vectors in Xk natu-
rally from the first to the last columns such that these correspond
to increasing eigenvalues. Then the first vector in Xk corresponds
to the eigenvector approximation of u1 and the qth vector to the
eigenvector approximation of uq. The calculated approximations
to the eigenvalues are given in Kk+1.

There are three distinct steps of solution.
First, the q starting iteration vectors in X1 are established, q > p,

where X1 is a matrix of dimension n � q.

Second, the iteration is performed, using Eqs. (5)–(9), for
k = 1,2, . . ., until the convergence tolerance is satisfied. Let kðkþ1Þ

i

be the approximation for ki calculated in the kth iteration, k P 2,
then we have convergence to an accuracy of 2s digits in the re-
quired eigenvalues when for tol = 10�2s

1�
kðkþ1Þ

i

� �2

qðkþ1Þ
i

� �T
qðkþ1Þ

i
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64
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75

1=2

6 tol; i ¼ 1; . . . ;p ð10Þ

where qðkþ1Þ
i is the ith vector in the matrix Qk+1 corresponding to

kðkþ1Þ
i [16]. The eigenvector approximations will only be accurate

to s digits. The theoretical convergence rates of these vectors are
ki

kqþ1
, with hence a higher convergence rate to an eigenvector corre-

sponding to a smaller eigenvalue [14,16]. While theoretical, these
convergence rates are usually also observed in practice.

Third, the Sturm sequence check is carried out to ensure that the
lowest p eigenpairs, that is (ki,ui) for i = 1, . . .p, have indeed been
calculated [1,16]. In case the Sturm sequence check is not passed,
it is usually best to continue the iteration with a larger number
of iteration vectors. In practice, this condition is hardly encoun-
tered provided a large enough number of iteration vectors is
employed.

Using the above equations, it is crucial to establish effective
starting iteration vectors, considering the quality and the number
of vectors. The quality of the starting iteration vectors is important,
because theory tells that if the subspace spanned by these vectors
contains the exact eigenvectors, then a single iteration will calcu-
late the exact eigenvalues and vectors sought. Nevertheless, in
the present paper, we choose to use the simple algorithm of Ref.
[1], see also Ref. [16], to establish the starting iteration vectors be-
cause we want to focus on other aspects of the solution scheme.

However, it should be noted that starting iteration vectors of
much better quality may be generated or known from a previous
solution. The eigenvectors just computed can be used, for example,
in optimization problems of structures when the frequencies are
calculated as the structure changes [16], in solving random eigen-
value problems when using Monte Carlo simulations [13], or in
computational biology when evaluating the frequencies and mode
shapes of proteins on conformational pathways [19]. In these
cases, the use of the calculated eigenvectors of the previous solu-
tion as the starting vectors of the next solution can be very
effective.

When these conditions do not apply and the order of the matri-
ces n is large, particularly good quality starting iteration vectors
may be generated, for example, using a reduction technique or
the method of component mode synthesis [16]. Using substructur-
ing smaller systems would be solved, even only approximately,
and the solutions of those would be used to establish good starting
iteration vectors in X1 for the complete system solution. This ap-
proach can be quite effective if ‘typical smaller systems’ can be
identified which in the complete system repeat themselves, so that
the eigensolution of a small problem can be used a multiple num-
ber of times in establishing the starting iteration vectors.

Whichever algorithm is used to establish the starting iteration
vectors, an effective number of vectors q is important because the
convergence rate to an eigenvector is given by ki

kqþ1
. In general, if q

is small, but of course larger than p, we need a relatively large
number of iterations to converge, while if q is large, we only need
a few iterations to converge but in this case each iteration requires
more computations. Hence, the use of an effective value of q is
desirable and we address the calculation of such value in the next
section.
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