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a b s t r a c t

This paper investigates the problem concerning the existence of a solution to a diverse

class of optimal allocation problems which include models of cake eating, exhaustible

resource extraction, life-cycle saving, and non-atomic games. A new formulation that

encompasses all these diverse models is provided. Examples of these models for which a

solution does not exist and the causes of the non-existence are studied. Two theorems

are provided to tackle the existence problem under different conditions. Several

analytical examples with a closed-form solution are offered to illustrate the usefulness

of the existence theorems.

& 2009 Elsevier B.V. All rights reserved.

1. Introduction

This paper studies the problem concerning the existence of a solution to a diverse class of optimal allocation models
which have appeared in various forms and found a lot of applications in economics. The optimal allocation models have the
following common underlying structure:

max
cðtÞ2F

Z 1

0
aðtÞf ðtÞgðcðtÞÞdt (1)

subject to

cðtÞX0, (2)

SðtÞX0, (3)
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S0ðtÞ ¼ jðtÞSðtÞ þmðtÞ � f ðtÞcðtÞ, (4)

and

Sð0Þ ¼ S0, (5)

where c; S;a; j;m; f : ½0;1� ! R, g : R! R, S0 2 ½0;1Þ, F denotes the space of piecewise continuous functions, and R

denotes the real line.
Model (1)–(5) is an optimal control problem with a control constraint and a state constraint. For convenience, the range

of t is taken to be ½0;1�, but it can be any bounded subset of the non-negative real line. A wide variety of economic models
can be formulated in the form of (1)–(5), e.g., exhaustible resource extraction (Hotelling, 1931), cake-eating (Gale, 1967),
life-cycle saving (Yaari, 1965), and non-atomic games (Aumann and Shapley, 1974). The formulation (1)–(5) provides a new
and convenient way to encompass all these diverse models.

Karlin (1959, pp. 210–214) was the first to study the existence problem for a special case of (1)–(5) in which jðtÞ ¼ 0,
mðtÞ ¼ 0, and f ðtÞ ¼ 1 are assumed. In this case, the optimization problem (1)–(5) becomes a calculus of variations problem.
Yaari (1964) advances Karlin’s (1959) analysis and provides an interesting example to show that the variational problem
may not have a solution even when gð�Þ is strictly concave and the other functions are smooth and well defined. Yaari’s
(1964) example is counter-intuitive because it means that there is no optimal way to allocate a given amount of resources
to maximize a well-defined objective in a simple and reasonable setting. Perhaps even more puzzling is that a solution to
the example will exist if S0 is sufficiently small. In other words, there is no optimal way to allocate the endowment S0 if it
is sufficiently large. Since Yaari’s (1964) work, a number of follow-up and refinement studies have appeared in both
the economics and mathematics literatures, e.g., Aumann and Perles (1965), Kumar (1969), Abrham (1970), Artstein (1974,
1980), and Ioffe (2006). These studies offer a variety of sufficient conditions to guarantee the existence of a solution to the
variational problem.

While previous studies have focused on the special case where jðtÞ ¼ 0, mðtÞ ¼ 0, and f ðtÞ ¼ 1, the existence problem for
the general model (1)–(5) has not yet been studied in the literature. The objective of this paper is to develop sufficient
conditions for the existence of a solution to the general model (1)–(5) under the assumption that að1Þ ¼ 0. As will be
explained later, að1Þ ¼ 0 is a special but not arduous restriction. When the condition holds, a precise existence result can be
obtained. The solution to (1)–(5), if it exists, possesses a distinctive feature which can be utilized to generate a simple
sufficient condition that guarantees the existence of a solution to the optimal allocation problem. When applied to the
special case where jðtÞ ¼ 0, mðtÞ ¼ 0, and f ðtÞ ¼ 1, the sufficient condition is substantially simpler than the existing ones in
the literature. The existence results reveal why (1)–(5) may not have a solution and whether the existence problem
depends on the presence of jðtÞ, mðtÞ, and f ðtÞ. In addition, the analysis provides a complete solution to the puzzle raised by
Yaari’s (1964) counter-intuitive example. While there are many general existence theorems for optimal control problems in
the literature (e.g., Cesari, 1983), the relatively simple and explicit structure of this class of optimal allocation problems
commensurately deserves a simple and direct existence result.

The plan of the paper is as follows. Section 2 presents the assumptions and three economic examples for (1)–(5). Section
3 investigates the existence problem and provides a series of analytical examples with a closed-form solution to illustrate
the usefulness of the existence theorems. Section 4 discusses the role of several major assumptions in the existence results
and explores the consequences if the assumptions are relaxed. Section 5 concludes the paper.

2. Assumptions and examples

The following is a list of assumptions on the functions in (1)–(5):

A1. aðtÞ, mðtÞ, jðtÞ, and f ðtÞ are continuously differentiable, mðtÞX0, jðtÞX0, f ðtÞ40, aðtÞ40 for t 2 ð0;1Þ, a0ðtÞp0, að0Þ ¼ 1,
and að1Þ ¼ 0.

A2. gðcÞ is twice continuously differentiable, g0ðcÞ40, and g00ðcÞo0.
A3. SðtÞ is piecewise continuously differentiable.

Let ðcnðtÞ; SnðtÞÞ denote the optimal solution to (1)–(5). From (4) and (5),

SnðtÞ ¼ e
R t

0
jðxÞ dx S0 þ

Z t

0
e�
R z

0
jðxÞ dx
½mðzÞ � f ðzÞcnðzÞ�dz

� �
; t 2 ½0;1�. (6)

The following lemma follows readily from the setup of the model.

Lemma 1. If the solution ðcnðtÞ; SnðtÞÞ exists, it must be unique and

Snð1Þ ¼ 0. (7)

Proof. The solution, if it exists, must be unique because (1) is strictly concave in c, the set of feasible cð�Þ is convex, and (4)
is linear in cðtÞ and SðtÞ. To prove (7), suppose the contrary that Snð1Þ40. By the left-continuity of SnðtÞ at t ¼ 1, there exist
s140 and s240 such that SnðtÞ4Snð1Þ � s140 for t 2 ð1� s2;1Þ. Consider the consumption path cnnðtÞ ¼ cnðtÞ for t 2
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