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a b s t r a c t

Despite the numerous studies concerning finite element model updating (FEMU), a challenging compu-
tational cost issue persists. Therefore, surrogate modeling has recently gained considerable attention in
FEMU. Conventionally, surrogate models are constructed by identical samples for all outputs. It is very
inefficient and subjective, if various response-surfaces exhibit even for identical parameters.
Accordingly, we propose a sequential surrogate modeling for FEMU. It uses infill criteria to guide
sampling for updating surrogate models automatically. The proposed method is successful to construct
the different response-surfaces and apply FEMU. It is promising for constructing surrogate models with
minimal user intervention and tremendous computational efficiency.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Considering that current design and assessment procedures do
not have any quantitative linkage to actual existing structures [1],
a process to associate physical models with corresponding existing
structures is necessary for the condition assessment.

Finite element (FE) model updating is a representative of such a
process, and is based on the inverse problem of identifying struc-
tural parameters by refining an initial FE model based on experi-
mental data. FE model updating can be categorized into
deterministic and non-deterministic approaches. In the determin-
istic approach [2–5], a residual between measured and computed
reference properties is used as an objective function, and an itera-
tive optimization scheme is employed to minimize the objective
function by adjusting the model parameters; whereas, the non-
deterministic approach takes into account the uncertainties associ-
ated with modeling and incomplete measurement data [6–11].
This approach involves finding the most probable models based
on the measured data, using a Bayesian statistical framework,
and interval and gap analysis.

The most important task in FE model updating is to minimize
the systematic error in the FE model. Many engineers prefer using
simple approaches owing to their computational efficiency, despite
the availability of much more sophisticated modeling approaches
[1]. Many researchers have noted that such simple modeling
approaches are inadequate, because of their inability to accurately

simulate the actual behavior of real structures. Such simple model-
ing approaches may results in the systematic errors due to model-
ing simplifications [12], the omission of structural components
[13], and FE discretization errors [14]. It is obvious that the pres-
ence of systematic errors results in bias in the model prediction,
and this leads to incorrect estimations of the updating parameter
[15]. Depending on the modeling and our experience, a high-
fidelity FE model can increase the required computational time
from only seconds to minutes for a simple analysis (e.g., modal
analysis). For a single run, this would not be demanding. However,
if the FE analysis must be iterated many times, the resulting pro-
cess would be highly computational-resource intensive.

In this context, surrogate models have recently attracted con-
siderable attention as faster alternatives to the iterative FE analy-
ses. Surrogate modeling is a method of emulating a computer
simulation model in the form of a mathematical/statistical approx-
imation, using the input and output of an FE analysis. The funda-
mental concept of applying surrogating model to reliability
analysis is not entirely new. However, the use of surrogate models
for FE model updating has been investigated recently, especially in
the civil engineering community [16]. Some examples of surrogate
models that have so far been investigated are Multilayer percep-
tion [17], polynomial model [16,18–20], moving least square
method for a polynomial model [21]; radial basis function [22];
Kriging model [23]. Surrogate models are constructed by training
samples in the parameter space; therefore, generating the samples
for the construction of a surrogate model is a key task. Conse-
quently, conventional surrogate modeling for FE model updating
has been investigated from a design of experiments (DOE) in the
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previous studies, such as central composite design [16,18,21,22],
uniform design [20], D-optimal design [19], and Sobol sequence
sampling [23].

The conventional approach generally employs a trial-and-error
method based on different designs (i.e., different subsets) of the
training samples, because the response-surface is not known
beforehand. It is also difficult to represent complicated response-
surfaces in the conventional approach under local variations of
response behaviors and non-linearity, because the conventional
approach generates samples that spread out uniformly across the
parameter space. In addition, it is inefficient to apply the identical
training samples to all target outputs, if identical updating param-
eters of the FE model can generate the different response-surfaces
of the target outputs due to their relative sensitivity.

To address the abovementioned difficulties, we propose a
sequential surrogate (SS) modeling for the efficient FE model
updating based on the Kriging model. The proposed method is able
to address the abovementioned difficulties of the conventional
approach. One crucial advantage of the proposed method is the
ability to statistically interpret the uncertainty in the prediction,
so that this approach can use the measure of infill criteria and
update a surrogate model by adding a new sample.

The rest of this paper is organized as follows. In Section 2, we
first describe the mathematical background of the Kriging model,
including the statistical interpretation of the Kriging prediction.
Next, we present a conventional sequential surrogate modeling
originated from the global optimization community [24,25], and
a potential problem in FE model updating is discussed. In order
to address the potential problem, we propose a sequential
surrogate modeling for FE model updating. In Section 3, FE model
updating based on the Kriging model with the proposed method
is performed numerically and experimentally, using a lab-scaled
five-story shear building structure. In addition, the computational
efficiency is discussed. In Section 4, we provide concluding remarks
on the study.

2. Sequential surrogate modeling based on Kriging model

2.1. Kriging model

The Kriging model is a surrogate model that originated from
Geostatistics [26]. The Kriging model is a way of modeling a func-
tion as a realization of Gaussian process. Assuming that the func-
tion being modeled is continuous, two samples of the true
function will tend to have similar values if the distance between
the two samples decreases. This spatial correlation can be used
to estimate an unknown function value from the known function
values. This property can be given the statistical interpretation
that the values of the function are correlated with a spatial
distance. Therefore, this spatial correlation can be modeled
statistically, using the relative distances between the samples.
The k-dimensional Kriging basis can be expressed as

wij ¼ exp �
Xk
p¼1

hp xip � x j
p

��� ���mp

 !
¼ corr y xi

� �
; y xj
� �� � ð1Þ

where subscript ‘‘p” denotes the dimension of sample x, the super-
scripts ‘‘i” and ‘‘j” indicate the ith and jth sample, respectively, and
xi � x j
�� ��mp is the relative distance measure between two samples in
a parameter space with m-norm. The Kriging basis contains param-
eters corresponding to each dimension (hp and mp) that determine
how fast the correlation decays in each dimension. Therefore, these
parameters serve to reflect the significant importance of each
dimension [25]. The main purpose of using this flexible basis is to
express the various shapes of the spatial correlation. To reduce

the computational complexity, Eq. (1) can be expressed as a Eucli-
dean distance (mp ¼ 2). In the remainder of this paper, boldface
indicates a matrix or vector.

2.1.1. Modeling of Kriging model
Using a random vector (Y), the values of a function of n samples

can be represented as

Y ¼ y x1
� �

y x2
� � � � � y xnð Þ� �T ð2Þ

This random vector (Y) has a mean of 1l, where 1 is an n-by-1 unit
vector, and a variance of r2. Assuming that the realizations (y(x)) of
this random vector are correlated, the correlation function can be
defined as in Eq. (1), using a 2-norm (mp ¼ 2). Therefore, the corre-
lation matrix of all samples can be constructed as

W ¼ corr Y ;Y½ � ¼
corr y x1

� �
; y x1
� �� � � � � corr y x1

� �
; y xnð Þ� �

..

. . .
. ..

.

corr y xnð Þ; y x1
� �� � � � � corr y xnð Þ; y xnð Þ½ �

2664
3775

ð3Þ
The covariance matrix can be derived from the correlation matrix
(W), as

COV Y ;Yð Þ ¼ r2W ð4Þ
The variance r2 determines the overall dispersion relative to the
mean of the Kriging model.

The value of the function represents the realization of the Gaus-
sian process, so that l and r2 are estimated using the observed
pattern of the training samples.

In a similar manner to statistical estimation theory, the param-
eters are estimated using maximum likelihood estimation. The
likelihood function is given by

L ¼ 1

2pr2ð Þn=2 Wj j1=2
exp � Y � 1lð ÞTW�1 Y � 1lð Þ

2r2

" #
ð5Þ

To simplify the likelihood function with numerical stability, the nat-
ural logarithm of Eq. (5) is taken, and the constant term is then
ignored. Therefore, we obtain

ln Lð Þ � � n
2
ln r2� �� 1

2
ln Wj j � Y � 1lð ÞTW�1 Y � 1lð Þ

2r2 ð6Þ

By taking the derivatives of Eq. (6) with respect to l and r2 and set-
ting these to zero, the maximum likelihood estimators for l and r2

are derived as follows:

l̂ ¼ 1TW�1Y
1TW�11

ð7Þ

r̂2 ¼ Y � 1lð ÞTW�1 Y � 1lð Þ
n

ð8Þ

By substituting Eqs. (7) and (8) into Eq. (6) and ignoring the con-
stant terms, we obtain the so-called concentrated log-likelihood
function, as

lnðLÞ � �n
2
ln r̂2� �� 1

2
ln Wj j ð9Þ

It is not possible to differentiate Eq. (9). However, it is obvious that
maximum likelihood estimates (l̂ and r̂2) can be sequentially com-
puted from the correlation matrix (W) and the training samples, so
that the only remaining parameter to be determined in Eq. (1) is hp.
Therefore, an optimization method is applied to find the optimal hp
by maximizing Eq. (9).
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