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a b s t r a c t

The present work aims at contributing to the characterization of the nonlinear dynamic behavior of struc-
tures incorporating cracks. With this purpose, the Discrete Element Method is adopted in conjunction
with an existing result from fracture mechanics that takes into account the local flexibility of a cracked
beam. The dynamic behavior of a cantilever beam and of a beam free of support conditions is studied and
the effect of the presence of a crack is analyzed. When possible, the results are compared with exact solu-
tions or with experimental data from the literature.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The detection of cracks in structures is a very important issue in
many engineering branches such as Civil, Mechanical and
Aeronautical and more practical and less onerous detection
methods allowing to assess the location and depth of the cracks
are continuously investigated. The dynamics of cracked beams
has been studied extensively in recent years both experimentally
and theoretically using analytical, semi-analytical or numerical
methods. In some studies, the presence of cracks is modeled by
the introduction of linear springs into the undamaged structure
at the location of the cracks [1–5]. Bilinear springs were used to
model cracks that open and close during the oscillation (breathing
cracks) [6,7]. Linear and nonlinear finite element analyses using
specific finite elements for the section of the crack based on the
strain energy function given by the linear fracture mechanics the-
ory have also been performed [8–13]. Single–degree–of–freedom
models [14–16] were also used to simulate the nonlinear behavior
of beams with breathing cracks. In [17], a continuous modification
of the stress field in the beam induced by a crack was taken into
account by an experimental function exponentially decaying with
the distance from the crack. A simplified (linear) variation of the
bending stiffness in the vicinity of the crack was considered in

[18]. A continuous cracked beam model consistent with linear
fracture mechanics was suggested in [19]. We also refer to [20]
for a comprehensive review on several approaches for the
modeling of cracks.

This work intends to contribute to the characterization of the
free or forced vibrational response of some structures incorporat-
ing cracks of different characteristics. The method used in the
development of the models presented in this paper is the Discrete
Element Method (DEM) [21]. Using this method the beam is repre-
sented as a discrete system of blocks (i.e. with a finite number of
degrees of freedom), where the mass and the moment of inertia
of each block are lumped in its middle point, linked by rotational
and transverse springs that simulate the bending and shear com-
pliances, respectively. Once the model is defined, the differential
equations governing its time evolution are established. For the par-
ticular case of a beam, these equations involve relative rotations
and displacements between blocks, as well as their derivatives
with respect to time. One of the most important criteria to obtain
good results using the DEM is the process adopted for the beam
discretization. It is expectable that, as one refines the mesh, the
results tend towards the exact solutions. However, the number of
blocks should not be indefinitely increased as that would lead to
an increase of the time expended in the numerical calculations;
there should exist a balance between the time and the effort used
in the calculations and the aimed precision for the results. The
easiness with which the DEM considers cases where the beams
are cracked should be emphasized. Assuming the existence of
cracks between rigid blocks, the localized loss of stiffness (coinci-
dent with the crack position) is taken into consideration in this
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work by changing the stiffness of the springs connecting the
blocks; the amount of reduction of the stiffness will be dependent
on the crack depth according to Okamura et al. [22]. The expression
for the local flexibility of a cracked beam was derived in [22] for
the computation of the load carrying capacity of a cracked column,
using linear fracture mechanics. To the best of our knowledge this
is the first time that the effect of a crack on the local flexibility of a
beam as derived in [22] is used together with the DEM [21] to
study the dynamic behavior of cracked beams, although the rigid
finite element method [23], which has features in common with
the DEM, has already been used to study the vibration of a cracked
rotor [13].

In this work, the dynamic behavior of several beam models is
studied and simulated with the help of the DEM implemented in
Matlab environment [24]. In Section 2 a cantilever beam model
is studied and the system of ordinary differential equations that
governs its motion is obtained. The existence of a breathing crack
(a crack that opens and closes accordingly to the sign of the curva-
ture of the cross section) is also considered. The time integration of
the equations that govern the motion of a cracked cantilever beam
is performed and the time evolution of the beam’s dynamic
response is presented and compared with experimental results.
In Section 3, an analogous study is made for a suspended beam
submitted to an oscillatory external force acting perpendicularly
to the beam’s suspension plane and free of support conditions in
the forcing direction. The last section is dedicated to the conclu-
sions and to the enumeration of some aspects that are worth of
future attention.

2. Cantilever beam

2.1. Dynamics of a homogeneous cantilever beam

In this section a cantilever beam of length L with uniform rect-
angular cross section b� h, mass density q and subjected at its free
end to an external concentrated time varying force is considered
(Fig. 1a). The beam is decomposed in N blocks and each pair of con-
secutive blocks is connected by a pair of springs (rotational and
transverse) (Fig. 1b). The first and last blocks have a length that
is half the length of the intermediate blocks, the latter with length

l ¼ L
N�1, mass m ¼ qbhl and moment of inertia J ¼ qbhl

2 ðh2 þ l2Þ
around an axis perpendicular to the plan of motion. The mass
and moment of inertia of the first and last blocks are me ¼ qbh ln

2

and Je ¼ qbhðln=2Þ
12 h2 þ ln

2

� �2� �
, respectively. The first block is consid-

ered to be clamped.
Applying d’Alembert’s principle to the n-th block (Fig. 2) we

obtain the equations that govern its translational and rotational
motion

mn€yn ¼ Snþ1 � Sn; n ¼ 2; . . . ;N � 1; ð1Þ

Jn€hn ¼ Mnþ1 �Mn þ ln
2
ðSnþ1 þ SnÞ; n ¼ 2; . . . ;N � 1: ð2Þ

Applying d’Alembert’s principle to the last block, where the system
of external forces was reduced to its center of mass (Fig. 3), we get

mN€yN ¼ �SN � FðtÞ; ð3Þ

JN€hN ¼ �MN þ lN
2
SN � lN

2
FðtÞ: ð4Þ

Eqs. (1)–(4) may be written in matrix form as

m€y ¼ AS� FðtÞeN�1; ð5Þ

J€h ¼ AMþ 1
2
LBS� lN

2
FðtÞeN�1; ð6Þ

where €y ¼ f€y2 €y3 � � � €yNgT 2 RN�1, €h ¼ €h2 €h3 � � � €hN
n oT

2 RN�1,

S ¼ fS2 S3 � � � SNgT 2 RN�1, M ¼ fM2 M3 � � �MNgT 2 RN�1, eN�1 ¼
f0 � � � 0 1gT 2 RN�1, m ¼ diagðm2;m3; . . . ;mNÞ 2 RðN�1Þ�ðN�1Þ, J ¼
diagðJ2; J3; . . . ; JNÞ 2 RðN�1Þ�ðN�1Þ, L ¼ diagðl2; l3; . . . ; lNÞ 2 RðN�1Þ�ðN�1Þ,

A ¼

�1 1 0 � � � 0

0 �1 1 ..
.

..

.

0 �1 1
0 � � � 0 �1

2
66666664

3
77777775
2 RðN�1Þ�ðN�1Þ ð7Þ

and
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Fig. 1. (a) Homogeneous cantilever beam with rectangular cross section. (b)
Discrete element model of the cantilever beam where the stiffness is discretized at
the interfaces between blocks.
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Fig. 2. Model of the n-th block of the cantilever beam.

Fig. 3. Model of the last block of the cantilever beam subjected to an external
transverse concentrated force at the tip.
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