
Optimal design of aeroengine turbine disc based on kriging surrogate models

Zhangjun Huang a,b,⇑, Chengen Wang b, Jian Chen a, Hong Tian a

a School of Energy and Thermal Power Engineering, Changsha University of Science and Technology, Changsha 410114, China
b Key Laboratory of Process Industry Automation, Northeastern University, Shenyang 110004, China

a r t i c l e i n f o

Article history:
Received 3 August 2009
Accepted 30 July 2010

Keywords:
Turbine disc
Optimal design
Surrogate model
Kriging method
Differential evolutionary algorithm
Design of experiments

a b s t r a c t

A design optimization method based on kriging surrogate models is proposed and applied to the shape
optimization of an aeroengine turbine disc. The kriging surrogate model is built to provide rapid approx-
imations of time-consuming computations. For improving the accuracy of surrogate models without sig-
nificantly increasing computational cost, a rigorous sample selection is employed to reduce additional
design samples based on design of experiments over a sequential trust region. The minimum-mass shape
design of turbine discs under thermal and mechanical loads has demonstrated the effectiveness and effi-
ciency of the presented optimization approach.

� 2010 Elsevier Ltd. All rights reserved.

1. Introduction

In advanced propulsive systems, a turbine disc bears vast
mechanical and thermal loads under its working conditions of high
temperature gradients and high rotational velocity, which may in-
duce intensive stresses and dangerous damages. A significant
objective of the shape optimization of the turbine disc is to mini-
mize its mass subject to constraints on the stresses and some other
practical conditions. Clearly, an effective optimization method will
be valuable to enhance the quality of the turbine disc and hence to
improve the engine specific thrust, thrust-to-weight ratio, and sys-
tem reliability.

With the growth in computing power of current computers,
computationally expensive finite element (FE) method has
become a common and important technique in the product devel-
opment process, and a large number of FE codes, including com-
mercial packages and in-house codes developed have been
mainly used for function evaluations (evaluations of the objective
and/or constraint functions), such as stress analysis, thermal anal-
ysis, vibration analysis and fatigue life estimates in the design and
optimization of aeroengine discs [1–4]. However, the optimization
design of a complex system like a gas turbine often involves
exploring a broad design space. This requires analyzing large num-
bers of design points. If all evaluations of these designs are per-
formed using computationally expensive FE method, it will lead

to an excessive computational cost and therefore an impractical
runtime of the optimization process.

One alternative is to construct a simple surrogate model to
approximate the response of the costly FE solvers. The surrogate
model expresses the relationship between the objective or con-
straint functions and the design variables with simple form equa-
tions. The surrogate model can be used to cover regions in the
design space for which a solution cannot practically be obtained.
In addition, the use of surrogate model often requires only a small
number of expensive FE analyses and can reduce significantly the
computing time in obtaining the optimal design. Therefore, the
approximation approach has been widely applied to engineering
optimization problems so as to reduce the computational cost.

There are several different categories surrogate models (also
called meta-models or approximate models) for engineering de-
sign problems [5,6], including the polynomial-based response sur-
face model [7,8], the neural networks (NNs) based surrogate model
[9,10] and the kriging model [11–13].

A polynomial-based response surface model is a most widely
used surrogate model due to its simplicity and effectiveness. The re-
sponse surface method uses least-squares regression analysis to fit
low-order polynomials to a set of experimental data. Because the
polynomial-based response surface model normally requires the
assumption of the order of the approximated base function, the de-
signer must evaluate the schematic shape of the objective function
over an entire solution space. This will sometimes be difficult since
it requires an understanding of the qualitative tendency of the en-
tire design space. Besides, the model function is typically chosen
to be first- or second-order polynomials, because a higher-order
polynomial not only tends to show severe oscillations but also
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requires too many support points [14]. This may result in limited
accuracy of the response surface model when the response data to
be modeled have multiple local extrema. Therefore, the polyno-
mial-based response surface model is likely awkward when it is
used for representing multi-modalities and non-linearity com-
monly appeared in complex engineering problem [15].

Neural networks are inherently massive parallel computational
systems comprised of simple nonlinear processing elements with
adjustable interconnections. The predictive ability of the network
is stored in inter-unit connection strengths called weights obtained
by a process of adaptation and learning from a set of design train-
ing data. Training of a network requires repeated cycling through
the data and continues until the error target is met or until the
maximum number of neurons is reached. So, neural networks are
quite powerful and flexible when it comes to handling complex
interacting functions, irregular, non-smooth, discontinuous or non-
linear design spaces. Due to the feature of neural networks, the
NNs-based surrogate model has good performance in prediction
accuracy for complex engineering problems. However, NNs-based
model presents some practical difficulties. For example, this mode
requires a good many sample points and much computation time
for the training of NNs [16].

Recently, kriging models have drawn much attention and been
widely used in a variety of applications such as structural optimi-
zation [17,18], multidisciplinary design optimization [19,20] and
aerospace engineering [11,21]. This type of models predicts the va-
lue of the unknown point using stochastic processes. Sample points
are interpolated with the Gaussian random function to estimate
the trend of the stochastic processes. The model has a sufficient
flexibility to model response data with multiple local extrema
and to represent the nonlinear and multimodal functions, though
this flexibility is obtained at an increase in computational expense
and a decrease in ease of use [17,22].

One important issues associated with adaptive optimization
strategies based on the knowledge obtained from the surrogate
model is the sequential updating of an approximate model with
additional data, which is also called sequential sampling. Various
methods for sequential sampling in the design space have been
studied in recent years. Space-filling designs and the expected
improvement concept were introduced by Jones et al. [23] as an
efficient sequential sampling strategy in the efficient global opti-
mization (EGO) algorithm, where the expected improvement crite-
rion is used for the balance between local and global search. For the
infill sample selection in the global optimization of stochastic
black-box systems, Huang et al. [24] adopted an augmented ex-
pected improvement function with desirable properties for sto-
chastic responses. Besides, Lee and Kang [18] used other two
sequential sampling strategies simultaneously for improving the
accuracy of kriging model. One was to select a new sample point
by maximizing the mean square error of the initial kriging model,
and the other was to select the new sample point as a stationary
point. What’s more, Farhang-Mehr and Azarm [25] introduced a
sequential maximum entropy design approach so that the re-
sponse function behavior could be automatically adapted by
emphasizing the irregular regions of the design space and design-
ing the next set of experiments accordingly. In addition, Xiong et al.
[26] introduced a sequential sampling procedure that use design
confidence as a metric to assist designers in making decision
regarding when to terminate the sampling process so that the cur-
rent optimal design can be accepted as the ‘‘true” optimal solution
with desired confidence.

The other important issue associated is the framework for the
management of surrogate models. Frameworks based on trust re-
gions and gradient-based search procedures have attracted much
attention in the past few decades [27–29]. These rigorous frame-
works guarantee convergence to a model local optimum and

work with nonlinear programming techniques or direct-search
methods. Besides, several attempts have been made to tackle
the problem of using surrogate models with evolutionary search
methods. Ratle [30] proposed a simple local convergence criterion
to decide when the exact model should be resorted to in a proce-
dure integrating a genetic algorithm with kriging models. How-
ever, this does not prevent the search from converging to false
optima. Jin et al. [31] proposed a framework for coupling evolu-
tionary strategy and NNs-based surrogate models. Two types of
evolution control methods were presented to decide the fre-
quency at which the exact model should be used. Song and Keane
[32] coupled a real-coded genetic algorithm with a kriging surro-
gate model in order to reduce computational cost without sacri-
ficing the ability of the GA in finding the global optimum for
complex landscapes, using a new approach based on the posterior
variance estimate to suggest new sample points for re-evaluation
using exact models. New sample points obtained were inserted
into an ordered database storing all the exact solutions evaluated
so far, and the surrogate model was updated when these new
points felled into the section of the dataset used in the construc-
tion of the surrogate model.

In this work, we explore a method combining a robust archived
differential evolution (RADE) algorithm [33] with kriging surrogate
models so as to reduce the total number of expensive function
evaluations and therefore the computation effort in the shape opti-
mization of aeroengine turbine disc. The kriging model is con-
structed on the base of data collected by evaluating the objective
and constraint functions at a few initial points, and afterward up-
dated gradually with additional sample points. At each iteration
the kriging model constructed is invoked repeatedly by the robust
archived differential evolution algorithm to estimate the location
of the optimum and suggest points where additional function eval-
uations may help improve this estimate. A new additional sample
point will be analyzed and inserted into the design dataset for the
update of the kriging model, until the kriging model is sufficiently
accurate and the optimization process is converged.

2. Problem formulation

2.1. Optimization model

The turbine disc can be simplified as an axi-symmetric rotating
disc with a centric bore. The circular cylindrical coordinates (r, h, z)
are adopted for the convenience of description and analysis in this
paper, where the symmetric axis z and the axial direction of the
turbine disc are consistent with each other. The half-axial cross
section of the turbine disc is shown in Fig. 1, where the disc shape
is defined with several geometric parameters, including the dead
rim radius (R1), bore radius (R2), web outer radius (R3), web inner
radius (R4), dead rim width (W1), bore width (W2), web outer width
(W3), web inner width (W4), dead rim height (H1) and bore height
(H2).

Among these geometric parameters above, the dead rim radius
(R1), bore radius (R2), dead rim width (W1) and dead rim height
(H1) can commonly be predetermined according to requirements
on other components such as the turbine blade and the gas flow
passage. The other six geometric parameters are identified as de-
sign variables and their ranges are given in Table 1.

Constraints for the turbine disc optimization consist of size con-
straints and performance constraints. The size constraints limit the
variable ranges. The performance constraints, such as life-span,
stress and structural transformation, are always set according to
a design rule. In this paper, we consider the radial stress and cir-
cumferential stress in the disc as the performance constraints for
minimizing the disc mass.

28 Z. Huang et al. / Computers and Structures 89 (2011) 27–37



Download English Version:

https://daneshyari.com/en/article/509931

Download Persian Version:

https://daneshyari.com/article/509931

Daneshyari.com

https://daneshyari.com/en/article/509931
https://daneshyari.com/article/509931
https://daneshyari.com

