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a b s t r a c t

The extended scaled boundary finite element method (X-SBFEM) based on the level set method (LSM) is
proposed in this paper to combine the advantages of the scaled boundary finite element method (SBFEM)
and the extended finite element method (XFEM). The level set method (LSM) algorithm is applied to fur-
ther develop the X-SBFEM, especially for the crack propagation problem. The Heaviside enrichment func-
tion is used to represent a jump across a discontinuity surface in a split element, and the non-smooth
behavior around the crack tip is described using the semi-analytical SBFEM. The stiffness of the region
containing the crack tip is computed directly, and the generalized stress intensity factors of many types
of singularities are obtained directly from their definitions using consistent formulas. In the numerical
simulations, a square plate with an edge crack under tension, a three-point bending beam, a four-
point shear beam and a dam (the Koyna dam) with a single propagating crack are modeled. The results
show that the proposed X-SBFEM is capable of calculating the stress intensity factors of cracks and pre-
dicting crack trajectories and load–displacement relations accurately. An analysis of the sensitivity of the
parameters is employed to demonstrate that various mesh densities and crack propagation step lengths
led to consistent results.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

In engineering, many catastrophic accidents have occurred
because of fracture or crack propagation. Therefore, research into
the fracture process of materials is meaningful for improving engi-
neering designs. Many numerical methods, including the finite ele-
ment method (FEM), the extended finite element method (XFEM)
and the scaled boundary finite element method, have been used
in studies of crack propagation.

The FEM is very general and flexible in modeling structures
with complex boundary conditions and complex cracking patterns
[1]. However, complex remeshing is needed when cracks propa-
gate and a 1/4 node singularity element is necessary to reflect
the singularity at a crack tip. To obtain sufficiently accurate results,
a fine finite element mesh around the crack tip is inevitable.

Belytschko pioneered so-called the extended FEM or XFEM, in
which the displacement discontinuities due to cracking are embed-

ded in the finite elements using discontinuous functions and near-
tip enrichment functions within the framework of partition of
unity so that remeshing is completely avoided [2–4]. The premise
for which XFEM can be applied to crack propagation is that the
asymptotic field of the crack tip is known in priori in an analytical
form and can, therefore, be used to construct a complex enrich-
ment function. For the fracture problem in homogeneous materi-
als, the asymptotic field of the crack tip is complex and unclosed
[5]. How to accurately construct enrichment functions that are
suitable for numerical calculations needs further study. In addition,
complex enrichment functions are added to the finite element
method based on the principle of approximation, which adds addi-
tional unknown quantities and causes the numerical integration to
be difficult at the crack tip and the stiffness matrix to be singular
[6].

The scaled boundary finite element method (SBFEM), which
was recently developed by Wolf and Song, combines the advan-
tages of the FEM and the BEM. It discretizes boundaries only to
reduce the modeled spatial dimensions one, as in the BEM, and
does not need fundamental solutions like the FEM does. The result
of the radial calculation is completely accurate, and the result of
the circumferential calculation is approximately accurate in the
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finite element sense. The SBFEM can improve the computational
accuracy significantly [7–9]. It is highly adapted to handling frac-
ture problems and can calculate the stress intensity factors (SIFs)
[10] using a unified formula regardless of whether the problem is
real, complex, or logarithmic without an integration technique
associated with the path of integration. In spite of this, SBFEM
can be computationally expensive, may still need to remesh as
the crack propagates, and has a full stiffness matrix.

In this paper, for numerical analysis of crackpropagation, a newly
developed extended SBFEM (X-SBFEM) based on the level set
method (LSM) [11,12] is proposed, in which the advantages of the
XFEM and SBFEMwere combined by making the most of the ability
of XFEM to represent a discontinuous displacement field conve-
niently and the ability of SBFEM to solve stress singularity problems
accurately, and the LSM is applied to further develop the X-SBFEM,
especially for the crack propagation problem. In chapter 2, we
explained the principle of X-SBFEM. In chapter 3, four numerical
simulations (a square plate with an edge crack under tension, a
three-point bending beam, a four-point shear beam and a dam
(the Koyna dam) with a single propagating crack) are modeled to
validate the general adaptation of the proposed X-SBFEM. Addition-
ally, some sensitivity analyses demonstrate that various mesh den-
sities and crack propagation step lengths led to consistent results. In
chapter 4, we concluded that this paper has developed the X-SBFEM
with the LSM to improve the modeling of crack propagation.

2. The extended scaled boundary finite element method
(X-SBFEM)

The core of the X-SBFEM [28,29] is to substitute the semi-
analytical SBFEM for the crack tip enrichment function to simulate
the nonsmooth behavior around the crack tip while the Heaviside
enrichment function is used to represent the jump across the dis-
continuity surface in the split element. The key is in how the algo-
rithm addresses the boundary conditions at the joint. This method
creates four types of elements in the domain: (1) general elements
(named E0) with no enriched nodes; (2) mixed elements (named
E1) with some enriched nodes; (3) split elements (named E2) with
all nodes enriched; and (4) the SBFEM super-element (named E3).
Fig. 1 shows a typical finite element mesh and a zone diagram
depicting the different element types near an arbitrary crack used
in the X-SBFEM. Nodes designated by hollow squares have the
number of degrees of freedom of a generalized node, which is used
to construct the displacement field in the form of a jump between
neighboring elements. Hollow circles are used to designate the
nodes that are in SBFEM elements.

2.1. The extended finite element method (XFEM)

The general formula of an XFEM displacement field [13,27]
based on linear elastic fracture mechanics (LEFM) is

uhðxÞ ¼
X
I2Nfem

NIðxÞqI þ
X
J2Nc

NJðxÞ#ðxÞaJ þ
X
K2N f

NKðxÞ
Xn

a¼1

Baðr; hÞbaK ð1Þ

where Nfem represents a node in a general element, Nc represents an

enriched node in an internal split crack, N f represents an enriched
node that includes the crack tip, and # and Ba represent the discon-
tinuous displacement field at both sides of the crack surface and the
enrichment function for the singularity at the crack tip, respec-
tively. NI;NJ and NK are the shape functions of respective node. qI

is a generalized degree of freedom. aJ and baK are generalized
degrees of freedom relating to # and Ba, respectively. n is the num-
ber of asymptotic functions of the crack tip, and ðr; hÞ is the local
coordinate of the crack tip.

2.2. The scaled boundary finite element method (SBFEM)

The SBFEM [14,15] uses a radial/circumferential coordinate sys-
tem. The domain’s boundaries are discretized by a one-
dimensional line element in the circumferential direction. The local
coordinate is �1 6 g 6 1. A smooth analytic function is used in the
radial direction. The local coordinate is 0 6 n 6 1. The scaling cen-
ter o is selected to ensure that all of the boundaries are visible from
it. Specifically, for a fracture problem, the scaling center o is placed
at the crack tip.

The displacement field given by the SBFEM is

Uðn;gÞ ¼ NðgÞuðnÞ ð2Þ
where NðgÞ is the interpolation shape function of the one-
dimensional line element.

The governing equations of the SBFEM can be derived using the
virtual work principle [16]. Without a body load, the equations are

E0n
2uðnÞ;nn þ ½E0 þ ET

1 � E1�uðnÞ;n � E2uðnÞ ¼ 0 ð3Þ

P ¼ E0uðnÞ;n þ ET
1uðnÞjn¼1; ð4Þ

where P is the equivalent boundary nodal force, and E0;E1, and E2

are the coefficient matrices of the SBFEM governing equations.
Because Eq. (3) is the Euler-Cauchy differential equation, its

solution must be of the form

uðnÞ ¼ /n�kc ¼
Xn
i¼1

cin
ki/i ð5Þ

Substituting Eq. (5) into Eqs. (3) and (4) leads to a standard lin-
ear eigenvalue problem [16]. It leads to the modal displacement
matrix U and eigenvector k.

On the boundary ðn ¼ 1Þ, Eq. (5) becomes

ub ¼ Uc or c ¼ U�1ub ð6Þ
Substituting Eqs. (5) and (6) into Eq. (4) leads to

P ¼ Kub ¼ ðE0UkU�1 þ ET
1Þub ð7Þ

Fig. 1. A typical finite element mesh with an arbitrary crack for the X-SBFEM.
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