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a b s t r a c t

The frequency-domain approach (FDA) to transient analysis of the boundary element method, although is
appealing for engineering applications, is computationally expensive. This paper proposes a novel adap-
tive frequency sampling (AFS) algorithm to reduce the computational time of the FDA by effectively
reducing the number Nc of sampling frequencies. The AFS starts with a few initial frequencies and auto-
matically determines the subsequent sampling frequencies. It can reduce Nc by more than 2 times while
still preserving good accuracy. In a porous solid model with around 0.3 million unknowns, 4 times reduc-
tion of Nc and the total computational time is successfully achieved.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The boundary element method (BEM) has been extensively
used to solve elastodynamic problems in many fields of science
and engineering, including fracture mechanics [1,2], seismology
[3,4] and soil-structure interactions [5]. This paper is devoted to
the efficient solution of transient elastodynamic problems.

According to the different solution strategies in time space, the
BEM for treating such problems generally follows two approaches,
namely, time-domain approaches and frequency-domain
approaches; see, e.g., the reviews by Beskos [6] and Costabel [7].
Time-domain approaches can be further classified into time-
stepping methods and the space–time integral equation method.
In these methods the physical problems are directly solved in the
real time domain, thus one can observe the phenomenon as it
evolves. However, such methods require an adequate choice of
the time step size. An improper time step could lead to instability
or numerical damping. For recent development of time-domain
methods, see e.g. [8,9]. Beside these methods there exist the possi-
bility to solve the time-domain boundary integral equation with
the so-called convolution quadrature method proposed by Lubich
[10], which provides a straightforward way to obtain a stable

time-stepping scheme using the Laplace transform of the kernel
function [8,11,12].

The frequency-domain approach based on the Laplace trans-
forms offers another attractive approach for transient analysis
[13–15]. In this approach, one solves the frequency-domain
boundary integral equations at a series of discrete frequencies,
then obtains the time-domain responses by employing certain
numerical inverse Laplace transform methods [16]. The Fourier
series method (FSM) [17,18] is one of the most popular methods
in computing the inverse Laplace transform which has found
wide applications in boundary element transient analysis, see
e.g. [19–22]. It works by truncating the infinite Bromwich contour
integral of inverse Laplace transform into a finite one, and evalu-
ating the finite integral using the trapezoidal rule based on
equally-spaced integration points (i.e., sampling frequencies). As
such, the time-domain responses can be efficiently obtained by
using the fast Fourier transform [23]; see Section 2.2. In real
applications the number of sampling frequencies in the FSM can
often be more than one hundred. In large-scale BEM analysis this
undoubtedly implies, a quite huge, if not prohibitive, computa-
tional burden.

This paper is devoted to the effective reduction of the number of
sampling frequencies in the frequency-domain approach. The out-
come is an adaptive frequency sampling (AFS) algorithm for tran-
sient BEM analysis, in which the sampling frequency is not
equally-spaced but adaptively determined according to the charac-
teristics of the computed frequency-domain responses. This work
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is inspired by the fact that the frequency spectrums of most real
structures are often smooth apart from certain peaks; and conse-
quently, the equally-spaced sampling frequencies used in the
FSM is not optimal in terms of computational efficiency. The adap-
tive algorithm is built upon the fitting of the frequency response
functions using rational functions, which can be efficiently solved
by using the vector fitting method proposed in [24]; see Sections
2.3 and 3 for the descriptions of the frequency-domain rational fit-
ting and the adaptive algorithm, respectively.

To the knowledge of the present authors, the present adaptive
algorithm is unique in solving transient elastodynamic problems
using the frequency-domain approach. It assembles the time-
domain responses by using the linear combinations of the
frequency-domain responses at some ‘‘typical” frequencies; in this
sense, it bears a similarity to the method of modal superposition in
finite element analysis. The difference is that in the finite element
method these ‘‘typical” frequencies are the natural frequencies
obtained by eigenvalue analysis. However, in BEM we cannot
afford to solve large-scale nonlinear eigenvalue problems for the
natural frequencies even to date [25]. Our adaptive algorithm
works by extracting some ‘‘typical” frequencies based on the com-
puted frequency response functions.

Finally, we mention that the idea of reducing the number of
solutions in frequency domain in preparation for the numerical
inversion is not new. It was first employed by Roesset and Kausel
in conjunction with the Fourier transform in [26] and later by Bes-
kos et al. in conjunction with the Laplace transform in [27]. How-
ever, in all those works equally-spaced sampling frequencies were
used and the number of frequency-domain solutions was reduced
by using suitable value of the damping parameter g. This is similar
to the FSM. From this point of view, our work builds upon the
method used in, e.g., [27]. We achieve further reduction of the
frequency-domain solutions by using more efficient, unequally-
spaced sampling frequencies, which are adaptively determined
according to the actually responses.

Our numerical experiments indicate that, by using the proposed
adaptive algorithm instead of the FSM, the number of sampling fre-
quencies can be reduced by a factor of 2 or more, while still pre-
serving the accuracy of the time-domain solutions; see Section 4.
This implies considerable saving of the computational time in
large-scale transient elastodynamic BEM analysis.

2. Basic theories and methods

2.1. Fast BEM for frequency-domain elastodynamics

Let X 2 R3 denote the region of space occupied by a three-
dimensional elastic solid with isotropic constitutive properties
defined by Lamé constants k and l, Poisson’s ratio m and mass den-
sity q. The speeds of S and P elastic waves are denoted by
cs ¼

ffiffiffiffiffiffiffiffiffi
l=q

p
; cp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kþ 2l=q

p
. Assume that the body force vanishes

and the initial displacements and velocities are both zero. Then
the frequency domain boundary integral equation (BIE) for elasto-
dynamic problem reads

cijðxÞujðx; sÞ þ ðP:V:Þ
Z
C
Tijðx; y; sÞujðy; sÞdCy

¼
Z
C
Uijðx; y; sÞrjðy; sÞdCy; x 2 C ð1Þ

where, s is the complex frequency; uj and rj are components of dis-
placements and tractions in the frequency domain, respectively; (P.
V.) indicates a Cauchy principal value (CPV) of the singular integral;
the free-term cijðxÞ is equal to 0:5dij for a smooth boundary at
x;Uijðx; y; sÞ and Tijðx; y; sÞ denote the displacement and traction

fundamental solutions which can be found in many text books
and thus are omitted here.

In this paper, the frequency-domain BIE (1) is solved by using
the locally-corrected Nyström BEM [28] based on curved quadratic
elements. In the numerical implementation, the boundary C is par-
titioned into ne curved triangular quadratic elements. The 6-point
Gauss quadrature rule on triangle is used in evaluating regular ele-
ment integrals. Thus, the nodes of the Nyström method on each
element are the points of the 6-point Gauss rule, and there are
totally nk ¼ 6 � ne in the boundary element mesh. By adopting the
Nyström discretization to all the boundary integrals associated
with the components of the kernels Uij and Tij and enforcing the
boundary conditions, one can finally obtain a linear system of
equations

AðsÞaðsÞ ¼ bðsÞ; ð2Þ
where, the N by N (N ¼ 3nk) system matrix A and the N-vector b are
known, and the N-vector a collects the unknown nodal displace-
ment and traction components which can be obtained by solving
the system. Note both the matrix and vectors in (2) are functions
of the frequency s. All the nearly singular integrals in the Nyström
discretization are evaluated by using the usual recursive subdivi-
sion quadrature procedure, and all the weakly and strongly singular
integrals are computed by using the method recently proposed in
[29]. The linear system (2) is solved iteratively by using the gener-
alized minimal residual method (GMRES). The evaluation of the
matrix–vector product is accelerated by using the kernel-
independent fast multipole method (KIFMM) [30].

2.2. Frequency-domain approach for transient analysis

In general, by frequency-domain approach (FDA) we mean a
method for computing the time-domain responses via the inverse
Laplace transform of their frequency-domain counterparts. To be
more specific, let hðsÞ denote a frequency-domain function, which
can be the displacement or traction component in BIE (1). Its

time-domain counterpart, denoted by ĥðtÞ, can be expressed by
using the Bromwich contour integral for inverse Laplace
transform

ĥðtÞ ¼ 1
2pi

Z gþi1

g�i1
hðsÞest ds; ð3Þ

where, s ¼ gþ ix, with x being the circular frequency; the
abscissa of convergence g is a real constant chosen to put the con-
tour to the right of all singularities in hðsÞ, which will be discussed
later.

The numerical computation of the Bromwich contour integral
(3) is in general an ill-posed problem. This difficulty has led to
the diversity of viable numerical approaches in the literature;
see, e.g., [18]. In [16] the performance of five different
approaches, including the Gaver–Stehfest method, Schapery
method, Weeks method, Talbot method and the Fourier series
method (FSM), is compared for BEM applications. In large-scale
BEM simulations since the solution of linear system (2) is often
computationally very expensive, the FSM should be the most
economical and robust one in all these five methods. The pri-
mary motivation of this paper stems from the promotion of
the computational efficiency of the FSM for solving large-scale
problems. However, the proposed method in Section 3 is more
like a new frequency-domain approach to transient analysis. To
inspire the new method, the basic idea of the FSM is briefly
summarized.

Let Dx and Dt be the circular frequency and time resolutions,
and T be the time period of the transient response. Given the num-
ber of sampling points Ns, one has the basic relations Dx ¼ 2p

T and
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