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a b s t r a c t

We solve the optimal asset allocation problem using a mean variance approach. The

original mean variance optimization problem can be embedded into a class of auxiliary

stochastic linear-quadratic (LQ) problems using the method in Zhou and Li (2000) and Li

and Ng (2000). We use a finite difference method with fully implicit timestepping to

solve the resulting nonlinear Hamilton–Jacobi–Bellman (HJB) PDE, and present the

solutions in terms of an efficient frontier and an optimal asset allocation strategy. The

numerical scheme satisfies sufficient conditions to ensure convergence to the viscosity

solution of the HJB PDE. We handle various constraints on the optimal policy. Numerical

tests indicate that realistic constraints can have a dramatic effect on the optimal policy

compared to the unconstrained solution.

& 2009 Elsevier B.V. All rights reserved.

1. Introduction

Continuous time mean variance asset allocation has received considerable attention over the years (Zhou and Li, 2000;
Li and Ng, 2000; Nguyen and Portrai, 2002; Leippold et al., 2004; Bielecki et al., 2005). Financial applications include
hedging futures (Duffie and Richardson, 1991), insurance (Chiu and Li, 2006; Wang et al., 2007), pension asset allocation
(Gerrard et al., 2004; Hojgaard and Vigna, 2007) and optimal execution of trades (Lorenz and Almgren, 2007). In its
simplest formulation, an investor can choose to invest in a risk-free bond or a risky asset, and can dynamically alter the
proportion of wealth invested in each asset, in order to achieve a mean variance efficient result.

The continuous time mean variance problem does not lend itself easily to a dynamic programming formulation. There
have been two main approaches to this problem. The original mean variance optimal control problem can be embedded
into a class of auxiliary stochastic linear-quadratic (LQ) problems, which can then be solved in terms of dynamic
programming (Zhou and Li, 2000; Li and Ng, 2000). Alternatively, Martingale techniques can be used (Bielecki et al., 2005).
In the case of the LQ method, previous papers use analytic techniques to solve the nonlinear Hamilton–Jacobi–Bellman
(HJB) PDE for special cases. In order to obtain analytic solutions, the authors typically make assumptions which allow for
the possibility of unbounded borrowing and infinite negative wealth (bankruptcy). However, some analytic solutions have
been developed for handling specific constraints: no stock shorting (Li et al., 2002) (but shorting the bond is still allowed)
and the no bankruptcy case (Bielecki et al., 2005) (but again allowing for shorting the bond).

A popular approach for optimal stochastic control problems in finance is to use utility functions (Cairns et al., 2006;
Damgaard, 2006; Muthuraman, 2007; Chellathurai and Draviam, 2007; Munk, 2000). This approach usually results in
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financial models which also generate HJB PDEs. Although investment policy based on mean variance optimization has its
critics, an advantage of this approach compared to power-law or exponential utility maximization is that the results can be
easily interpreted in terms of an efficient frontier.

The objective of this paper is to develop a numerical method for solving the continuous time mean variance optimal
asset allocation problem. We will use a fully numerical scheme based on solving the HJB equation resulting from the LQ
formulation. Our scheme can easily handle any type of constraint (e.g. nonnegative wealth, no shorting of stocks, margin
requirements).

Although the methods developed in this paper can be applied to any asset allocation problem, such as those discussed in
Nguyen and Portrai (2002), Bielecki et al. (2005), Chiu and Li (2006), and Wang et al. (2007), we will focus on asset
allocation problems which are relevant to defined contribution pension plans as discussed in Hojgaard and Vigna (2007)
and Cairns et al. (2006). In Hojgaard and Vigna (2007), the objective is to determine the mean variance efficient strategy in
terms of final wealth. In Cairns et al. (2006), the pension plan model includes a stochastic salary component. In Cairns et al.
(2006), the problem was formulated in terms of maximizing the utility of the wealth-to-income ratio. Here, we consider
the same model, but solve for the optimal continuous time mean variance efficient frontier. Note that by setting the
contribution rate to zero, the pension plan problem reduces to the classical continuous time (multi-period) portfolio
selection problem (Zhou and Li, 2000; Li and Ng, 2000; Li et al., 2002; Bielecki et al., 2005; Li and Zhou, 2006).

The main results of this paper are:

� Based on the methods in Forsyth and Labahn (2008) and Wang and Forsyth (2008), we develop a fully implicit method
for solving the nonlinear HJB PDE, which arises in the LQ formulation of the mean variance problem. Under the
assumption that the HJB equation satisfies a strong comparison property, our methods are guaranteed to converge to the
viscosity solution of the HJB equation. In addition, the policy iteration scheme used to solve the nonlinear algebraic
equations at each timestep is globally convergent. Note that an explicit method would have timestep restrictions due to
stability considerations. In the case of an unbounded control, the maximum stable timestep would be difficult to
estimate. This problem does not arise if an implicit method is used.
� By solving the HJB PDE and a related linear PDE, we develop a numerical method for constructing the mean variance

efficient frontier (in continuous time). Any type of constraint can be applied to the investment policy.
� We pay particular attention to handling various constraints on the optimal policy. In particular, in order to compare the

numerical solution with the known analytic solution in special cases, it is necessary to allow for negative wealth and
unbounded controls. This requires careful attention to the grid construction and form of the control as the mesh and
timesteps shrink to zero.
� From a practical point of view, we observe that the addition of realistic constraints can completely alter some of the

properties of the mean variance solution compared to the unconstrained control case (Li and Zhou, 2006).

We should point out here that the optimal mean variance strategy in Zhou and Li (2000), Li and Ng (2000), Nguyen and
Portrai (2002), Leippold et al. (2004), Bielecki et al. (2005), Chiu and Li (2006), Wang et al. (2007), and Hojgaard and Vigna
(2007) is the pre-commitment strategy, i.e. once the initial strategy has been determined (as a function of the state
variables) at the initial time, the investor commits to this strategy, even if the mean variance policy, computed at a later
time would differ from the pre-commitment strategy. This contrasts with the time-consistent policy whereby the investor
optimizes the mean variance tradeoff at each instant in time, assuming optimal mean variance strategies at each later
instant. The subtle distinction between these two approaches is discussed in Basak and Chabakauri (2007). We note that
the efficient frontier for the pre-commitment strategy must always lie above the efficient frontier for the time-consistent
strategy. However, there is some economic controversy about the meaning of these two approaches. We will focus on the
pre-commitment policy in this paper, leaving the time-consistent problem for future work.

2. Mean variance efficient wealth case

We first consider the problem of determining the mean variance efficient strategy in terms of the investor’s final wealth.
We will refer to this problem in the following as the wealth case. This will allow an explanation of the basic approach for
construction of the efficient frontier, without undue algebraic complication. For certain special cases, there are also some
analytic solutions available (Hojgaard and Vigna, 2007) for this problem. This will enable us to compare with the numerical
solution.

Suppose there are two assets in the market: one is risk free (e.g. a government bond) and the other is risky (e.g. a stock
index). The risky asset S follows the stochastic process,

dS ¼ ðr þ x1s1ÞS dt þ s1S dZ1; ð2:1Þ

where dZ1 is the increment of a Wiener process, s1 is volatility, r is the interest rate, x1 is the market price of risk (or Sharpe
ratio) and the stock drift rate can then be defined as mS ¼ r þ x1s1. Suppose that the plan member continuously pays into
the pension plan at a constant contribution rate p in the unit time. Let WðtÞ denote the wealth accumulated in the pension
plan at time t, let p denote the proportion of this wealth invested in the risky asset S, and let ð1� pÞ denote the fraction of
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