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a b s t r a c t

A model for simulating micro-cracking in cementitious composite materials is presented. The model
employs micro-mechanical solutions of a material with a matrix phase, spherical inclusions and
penny-shaped cracks as well as a rough crack contact component. The model follows from that of Refer-
ence [Jefferson AD, Bennett T. Micro-mechanical damage and rough crack closure in cementitious com-
posite materials. Int J Numer Anal Methods Geomech 2007;31:133–46], but now a two phase
composite is used in place of a homogenous material and the matrix stresses are employed in the eval-
uation of the micro-cracking. Single point compression and tension strain path examples show that the
new formulation improves the accuracy of the model when judged against material data from concrete
and mortar specimens.

� 2009 Elsevier Ltd. All rights reserved.

1. Introduction

The mechanical properties of cementitious composite materials
(CCMs), such as concrete and mortar, depend upon the strength
and stiffness of randomly distributed coarse and fine aggregate
particles, the strength of the bond between the aggregate particles
and hardened cement paste (hcp), and upon the amount of mois-
ture in the pores of the material. The behaviour of CCMs is also
strongly dependent on the presence and development of micro-
and macro-cracks within the material. These cracks may occur
within the hcp, in the bond between hcp and aggregate particles
and, although less frequently, within the aggregate particles them-
selves [2].

Detailed knowledge of the structure of these materials and of
the mechanisms that lead to their complex behaviour has not led
to the development of any one material model that is able to rep-
resent their multi-faceted behaviour. However much progress has
been made over many years in the development of models which
are able to represent some of the macroscopic behavioural charac-
teristics of these materials, including those based on plasticity the-
ory [3–5], damage theories [6,7] and combinations of the two [8,9].
These models often have complex surfaces and evolution equations
that require multiple parameters. These parameters can vary sig-
nificantly from material to material and be difficult to establish
yet have a strong influence on behaviour.

An alternative to macroscopic models are models based upon
micro-mechanical theories. The expectation in using a micro-
mechanical basis for a model is that by modelling the structure
and behaviour of the material at the meso (or micro) scale, models
can be developed which predict the correct macroscopic behaviour
whilst using simple model components and a limited number of
physically meaningful parameters. The idea of using models for
CCMs based on micro-mechanics is far from new. The development
of the micro-plane model, which began over a quarter of a century
ago, was inspired by micro-mechanics but development continued
on a phenomenological path rather than micro-mechanical mech-
anistic path [10].

A great deal of work has been carried out during the last few
decades on micro-mechanical solutions, much of it directed to
the simulation of metal matrix composites. Nemat-Nasser and
Hori’s text [11] provides details of the major advances up to the
date of publication and this includes a full account of the classic
work of Budiansky and O’Connell [12].

Much past work has concentrated on deriving elastic moduli for
composite materials with inclusions and or voids and cracks.
Huang et al. [13] computed effective moduli for elastic materials
with spherical inclusions and penny-shaped cracks. Zheng and
Du [14] used the effective self-consistent method to derive moduli
for composites with multi phases and multiple inclusions and
voids. Considerable advances have also been made in recent years
on micro-mechanical models for simulating inelastic behaviour
[15,16], including a micro-mechanical damage model with cohe-
sive cracks [17].
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There has been less work carried out on the application of mi-
cro-mechanical models to cementitious composites than to many
other types of composite but some relatively recent work in this
area has been undertaken by Pensée et al. [18] and Pensée and
Kondo [19], who have developed models based on the solution of
an elastic solid containing penny-shaped cracks. Gambarotta [20]
developed an anisotropic friction-damage model for this type of
material based on the solution of an elastic solid containing a series
of plane cracks.

The present authors recently developed a model for CCMs based
on micro-mechanical theories in which ‘penny-shaped’ crack solu-
tion was adopted with a local damage evolution model [1]. The
model was different from others, in particular, because a new
rough crack closure component was integrated with the model.
This was shown to naturally produce certain characteristics of
the biaxial compressive behaviour of cementitious composite
materials which are not simulated by models that do not include
the contact component. One of the difficulties with the model how-
ever was that evolution was controlled by total strains which re-
sulted in parameters that were not directly related to the
strength data generally available for such materials. In an attempt
to improve the model, and to include the aggregate particles
explicitly, the micro-mechanical solution for a two-phase elastic
composite comprising a matrix material with spherical inclusions
has been employed in place of that of a homogenous isotropic elas-
tic material. The evolution of micro-cracks is assumed to depend
upon the effective matrix stresses and can thus, in principle at
least, be related to the actual strength data for the matrix material.

2. Model details

This model is based on a two-component elastic composite
comprising a matrix (m) and spherical inclusions (X). If viewed
as concrete, the matrix material would represent mortar and the
inclusions the coarse aggregate particles. Spherical inclusions pro-
vide only an idealistic representation of the coarse aggregate but
the addition of a second phase with different properties does rep-
resent an improvement over the use of an isotropic medium and it
allows a direct simulation of the stress differences that occur as a
result of the material being heterogeneous. It is further noted that
the representation would be closer to reality for a concrete made
with rounded gravel aggregate than for one made with angular
crushed limestone aggregate.

The volumetric proportion of each of these components is de-
noted fm and fX, respectively, with the condition that fm + fX = 1.
Micro-cracks are assumed to develop in the matrix phase and are
assumed to depend on both the matrix and average stresses. Fur-
thermore, the micro-cracks are assumed to have rough surfaces
which can regain contact with both shear and normal closing
strains. The basis of the model is illustrated in Fig. 1,

A Mori–Tanaka averaging scheme [11,21] is used to derive the
elastic properties of the two component composite. Expressions
for the average strain, average stress, constitutive relationships

for the individual components, those for the composite as a whole
and an expression relating the matrix to average stress tensors are
as follows:

e ¼ fXeX þ fmem þ ea ð1Þ
r ¼ fXrX þ fmrm ð2Þ
rX ¼ DX : eX ð3Þ
rm ¼ Dm : em ð4Þ
r ¼ DmX : ðe� eaÞ ð5Þ
rm ¼WmX : r ð6Þ

in which, subscripts m and X denote matrix and inclusion phases,
respectively, e = strain tensor, r = stress tensor, D = elastic constitu-
tive tensor, TX ¼ ðI4s þ SX : AXÞ, AX ¼ ½ðDX � DmÞ : SX þ Dm��1 :

ðDm � DXÞ, SX = Eshelby tensor for spherical inclusions,
DmX ¼ ðfXDX : TX þ fmDmÞ : ðfXTX þ fmI4sÞ�1 and
WmX ¼ Dm : ðfXDX : TX þ fmDmÞ�1, I4s = symmetric fourth order iden-
tity tensor.

The non-zero added strain components from each set of micro-
cracks with the same normal vector r = [r s t]T are as follows [11]:
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where f ¼ Nca3
0, where f is the crack density parameter, Nc is the

number of cracks per unit volume and �r is the far field stress.
If the elastic moduli in Eq. (7) are written in the form of the ten-

sor Ca and �s is the far-field stress tensor transformed to the local
axes then

ea ¼ f Ca : �s ð8Þ

Employing the stress transformation �s ¼ N : �r and the strain
transformation ea ¼ Ne : ea, in which N and Ne denote the stress
and strain transformation tensors, respectively, the added strains
from a continuously distributed series of cracks is given by
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in which f is now a continuous function of the 3D polar coordinate
angles h and W.

If the Mori–Tanaka scheme for a non-dilute system was used,
the average (far field) stresses ð�r and �sÞ would be replaced by
the matrix stresses (rm and sm). However, if the matrix stresses
are used as a basis to calculate the added local strains throughout,
the post peak response is particularly brittle in compression. This is
because the nature of the homogenised constitutive equation (6)
means that lateral matrix stresses do not relax as lateral cracking
occurs. For example, under uniaxial compression the lateral zero
stress condition is maintained by the lateral tensile matrix stresses
balancing the lateral compressive inclusion stresses and these do
not both tend to zero directly with lateral cracking but rather
maintain the value governed by the compressive stress. Therefore,
a cracking stress (ra, sa) is introduced which provides a transition
from the matrix to the average stresses, such that initial cracking is
controlled by the matrix stresses but the latter stages are con-
trolled by the average stresses as follows:

sa ¼ N : N : r ð10Þ

where N ¼ rWmx þ ð1� rÞI4s, r ¼ e�gr and gr ¼
fi�etm
2etm

in which f is
the effective local strain parameter and etm the strain at first crack-
ing in the matrix phase. The transition is illustrated in Fig. 2.

Using Eq. (9) in Eq. (5) and making use of Eqs. (4), (6), and (10),
the relationship between average stress and average strains may
be derived to be
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Fig. 1. Two phase elastic composite with elliptical cracks with rough surfaces.
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