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a b s t r a c t

The macroscopic strength domain of in-plane loaded masonry walls is derived using an approach based
on the upper bound theorem of limit analysis within the framework of homogenization theory. Following
an approach similar to the Method of Cells for fiber-reinforced composites, a typical representative vol-
ume of masonry is subdivided into a few sub-cells, and a strain-rate periodic, piecewise differentiable
velocity field, depending on a limited number of degrees of freedom, is defined. The ensuing
approximated macroscopic failure surface is found to match with fair accuracy both available experimen-
tal data and theoretical predictions obtained by other authors with more refined numerical approaches.
The proposed model is also applied to the prediction of the bearing capacity of a deep masonry beam: for
any joint thickness, the criterion is found to give results as accurate as other complex numerical models,
which take the heterogeneous nature of masonry into account. The model thus combines computational
efficiency and accuracy.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

In the last decades, there has been a growing interest in the
mathematical description of the mechanical behavior of brick
masonry beyond the elastic limit and up to collapse. A number of
theoretical [1,2] and experimental studies [3] have been carried
out, with the aim of providing reliable and efficient tools for the
safety assessment of masonry structures, including monuments
and buildings of historical value.

Micro-modelling is, in principle, the most refined approach to
analyze masonry structures [4–8], and heterogeneous bodies in
general, as the geometry and the mechanical properties of the con-
stituent materials can be explicitly taken into account with any
degree of accuracy. An intrinsic drawback of this approach is the
need of modelling units and mortar joints separately. Although
most authors assume joints to be interfaces of vanishing thickness,
the computational effort of any micro-modelling approach is pro-
portional to the number of bricks the structure consists of, so that
its applicability is limited to small panels.

At the other extreme is macro-modelling [9–15], which does
not make any distinction between units and joints, and aims at

defining the mechanical properties of an equivalent homogeneous
material.

Homogenization [16–24] is a fair compromise between micro-
and macro-modelling. Indeed, the mechanical properties of the
macroscopically equivalent material are derived from those of
the constituents (brick and mortar), which can be easily obtained
through cheap tests on small specimens. Once these properties
have been estimated through the analysis of a Representative Vol-
ume Element (RVE), fairly rough finite element meshes can be
employed to analyze large masonry buildings, assumed to consist
of a homogeneous (anisotropic) material.

The major drawback of homogenization in non-linear FE com-
putations is that a continuous interaction between meso- and
macro-scale is needed. This dramatically increases the computa-
tional effort, as the field equations have to be numerically solved
at each loading step, at all the integration points. For the above rea-
sons, limit analysis combined with homogenization theory seems
to be one of the most powerful and straightforward structural anal-
ysis tools to predict the ultimate bearing capacity of masonry
structures in a fast and reliable way.

Different homogenization models have been recently proposed
in the technical literature for the evaluation of homogenized
strength domains for in-plane [20–23] and out-of-plane loaded
[24–30] masonry walls. Assuming both units and joints to consist
of rigid plastic materials with associated flow rule, the classical
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upper and lower bound theorems of limit analysis can be applied
to any RVE to approximate the macroscopic strength domain of
masonry. In particular, according to the lower bound theorem,
any divergence-free plastically admissible micro-stress field, such
that the stress vector is anti-periodic over the boundary of the
RVE, allows a lower bound to the actual homogenized failure
domain to be obtained by means of a constrained maximization
problem. Conversely, the upper bound theorem deals with kine-
matically admissible velocity fields fulfilling suitable periodicity
conditions, and allows upper bounds to the actual homogenized
failure domain to be obtained by means of the constrained minimi-
zation of the internal dissipated power. In both cases, the mechan-
ical problem is translated into a mathematical (non-)linear
programming problem, with a reduced number of variables.

In the present work, the upper bound theorem of limit analysis
is employed to estimate the macroscopic strength domain of in-
plane loaded masonry walls, taking the finite thickness of the joints
and the limited strength of both components into account. The
advantage of this approach compared to existing proposals is the
accuracy in the definition of the macroscopic domain, combined
with the simplicity of the proposed velocity field, which depends
on a very limited number of parameters.

The layout of the paper is as follows. In Section 2, the kinematic
definition of the macroscopic strength domain of periodic hetero-
geneous media [31] is briefly recalled. The original model is pre-
sented in Section 3. In Section 3.1 a simple periodic velocity field
is proposed, dividing any RVE into sub-cells according to the so-
called Method of Cells (MoC) [32,33]. The ensuing limit analysis
problem formulated over the RVE is detailed in Section 3.2. The
main advantages of the proposed approach are summarized in Sec-
tion 3.3. The model is applied in Section 4 to estimate the uniaxial
off-axis compressive strength of wallettes, for which closed-form
expressions are available in the literature [34,35]. In Section 5 a
few models available in the literature to predict the macroscopic
strength of masonry are briefly reviewed [22,26,27]: the biaxial
strength domains given by the MoC at any orientation of the prin-
cipal stresses to the joints are compared with those predicted by
the existing models in Section 6. The failure surfaces predicted
by the MoC are compared in Section 7 with the experimental
results of biaxial compression tests carried out by other authors
[36] on masonry panels. The implementation of the proposed crite-
rion in a finite element code is illustrated in Section 8: the code is
applied in Section 9 to predict the limit load of a deep beam. Com-
parisons with the predictions given by refined heterogeneous mod-
els, which accurately take the masonry texture into account, are

also reported, to emphasize the accuracy of the proposed approach
for any joint thickness. Finally, in Section 10 the main findings of
the work are summarized and future perspectives of the research
are outlined.

2. Homogenization for rigid-plastic periodic media: Kinematic
definition of the macroscopic strength domain

Masonry is a composite material usually made of units bonded
with mortar joints. In most cases of building practice, units and
mortar are periodically arranged. Owing to periodicity, any wall
X can be seen as the repetition of a Representative Volume
Element Y (RVE, or unit cell). Y contains all the information
necessary to completely describe the macroscopic behavior of X.
If a running bond or a header bond pattern is considered
(Fig. 1a), it is expedient to choose an elementary cell of rectangular
shape (Fig. 1b).

To define the macroscopic (or global, or average) mechanical
properties of masonry, homogenization techniques can be used
both in the elastic and inelastic range, taking into account the
micro-structure only at a cell level. This leads to a significant sim-
plification of the numerical models adopted to analyze entire
masonry buildings, especially in the inelastic field.

The basic idea of any homogenization procedure consists in
defining averaged quantities representing the macroscopic stress
R and the macroscopic strain rate D as follows:

R ¼ 1
A

Z
Y
rðyÞdY ; D ¼ 1

A

Z
@Y

mðyÞ �
s

nðyÞdS ð1Þ

where A is the area of the RVE, y is any point in Y or on its boundary
oY, r is the microscopic (local) stress field, m is the local velocity
field, n is the unit outward normal vector to oY, and �

s
denotes

the symmetric part of the dyadic product m � n. Eq. (1) applies in
general to microscopic non-differentiable velocity fields.

r and m must fulfil suitable periodicity conditions to match the
periodicity of the heterogeneous medium:

v ¼ Dy þ ev ; ev periodic on Y ðaÞ
rn anti� periodic on @Y ðbÞ

�
ð2Þ

Any velocity field fulfilling Eq. (2a) is said to be ‘‘strain-rate
periodic’’.

The kinematic definition of the homogenized strength domain
of masonry, say Shom, is due to Suquet [31] and makes use of the
definition of the support function of this domain, phom(D), which
reads:

(a) (b)

Fig. 1. (a) Running or header bond brick wall; (b) rectangular RVE and subdivision into sub-cells.
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