
Efficient implementation of Galerkin meshfree methods for large-scale
problems with an emphasis on maximum entropy approximants

Christian Peco, Daniel Millán, Adrian Rosolen, Marino Arroyo ⇑
LaCàN, Universitat Politècnica de Catalunya (UPC), Barcelona 08034, Spain

a r t i c l e i n f o

Article history:
Received 16 July 2014
Accepted 3 December 2014
Available online 10 January 2015

Keywords:
Meshfree methods
Local maximum entropy
Sparse matrix efficient assembly
Matrix structure creation
Optimal memory storage
Code optimization

a b s t r a c t

In Galerkin meshfree methods, because of a denser and unstructured connectivity, the creation and
assembly of sparse matrices is expensive. Additionally, the cost of computing basis functions can be sig-
nificant in problems requiring repetitive evaluations. We show that it is possible to overcome these two
bottlenecks resorting to simple and effective algorithms. First, we create and fill the matrix by coarse-
graining the connectivity between quadrature points and nodes. Second, we store only partial informa-
tion about the basis functions, striking a balance between storage and computation. We show the perfor-
mance of these strategies in relevant problems.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Meshfree methods have emerged in recent years as a viable
alternative to finite elements in a number of applications, see
[1–5] for a detailed review. These methods are based on basis func-
tions that do not rely on a mesh. As a consequence, many of the
requirements associated with the quality of the elements in tradi-
tional finite element method (FEM) are relaxed or disappear, but
this extra flexibility raises new challenges in the numerical imple-
mentation [6]. Meshfree methods also present several advantages
such as basis functions with high-order continuity, robustness in
dramatic grid deformations [7–9], and easier local adaptivity
[10,11]. Galerkin meshfree methods require a quadrature mesh
to perform numerical integration, commonly requiring a higher
number of quadrature points to accurately integrate the weak form
due to their nonpolynomial nature and nonelement-wise support
[12,13]. Additionally, most of the meshfree methods present an
awkward treatment of essential boundary conditions due to non-
satisfaction of the Kronecker delta property [3,14].

Since smoothed particle hydrodynamics [15], a variety of tech-
niques have emerged, such as reproducing kernel particle method
[16], partition of unity finite element method [17], element free
Galerkin [18] and the method of finite spheres [19,20], to mention
a few. We resort in this work to the local maximum entropy
(LME) approximation schemes, a meshfree method inspired on

information theory that generates nonnegative and smooth basis
functions (see [21–25] for a detailed description, properties and
extensions). Because the LME basis functions do not satisfy the
Kronecker-delta property at nodes, these schemes are referred to
as approximants instead of interpolants. The capabilities of LME
approximants have been examined in a variety of computational
mechanics applications, such as linear and nonlinear elasticity
[25,26], plate [27] and thin-shell analysis [28,29], convection–
diffusion problems [30,31], and phase-field models of biomem-
branes [32,33] and fracture mechanics [34–36].

Like other meshfree methods, LME approximants involve a
dilation or locality parameter that modulates their behavior and
support. LME approximants show an exponential decay controlled
by the locality parameter, and far from the boundaries they look
like Gaussian weighted functions [37,24]. Their effective support
is controlled by setting a cut off or threshold value (Tol0) below
which the basis functions are taken numerically to be zero (see
Fig. 1 and Appendix A). The proper choice of the locality parameter
is problem dependent and not easy in general, which has moti-
vated a systematic studies for general meshfree methods [38]
and for LME approximants [25] in particular. In LME approxima-
tions, the locality parameter is an aspect ratio parameter c, which
allows us to smoothly move from linear finite elements shape func-
tions (c > 4:0) to more spread out approximation schemes (e.g.,
c ¼ 0:6), as illustrated in Fig. 2. In general, broader functions lead
to more accurate results for problems with smooth solutions at
the expense of higher computational cost and worse matrix
conditioning [22,28].

http://dx.doi.org/10.1016/j.compstruc.2014.12.005
0045-7949/� 2014 Elsevier Ltd. All rights reserved.

⇑ Corresponding author.
E-mail address: marino.arroyo@upc.edu (M. Arroyo).

Computers and Structures 150 (2015) 52–62

Contents lists available at ScienceDirect

Computers and Structures

journal homepage: www.elsevier .com/locate/compstruc

http://crossmark.crossref.org/dialog/?doi=10.1016/j.compstruc.2014.12.005&domain=pdf
http://dx.doi.org/10.1016/j.compstruc.2014.12.005
mailto:marino.arroyo@upc.edu
http://dx.doi.org/10.1016/j.compstruc.2014.12.005
http://www.sciencedirect.com/science/journal/00457949
http://www.elsevier.com/locate/compstruc


In contrast to conventional FEM, where the structure of the
matrix is inherited from the mesh graph, stencils of meshfree
schemes depend strongly on the aspect ratio parameter c. In our
experience, a noticeable run-time computational cost of meshfree
methods is due to the creation of the sparse matrix structure and
the assembly process, which can be specially harmful for iterative
processes. These stages can be as expensive as the solver stage in
two-dimensional problems and exceed it in three-dimensional
ones. In a typical implementation of the assembly process in mesh-
free methods, the code loops over the quadrature points. The den-
ser sparsity pattern and the large number of Gauss points required
for accurate integration can make these methods unpractical for
large-scale calculations. To overcome this issue, we propose here
a set of algorithms based on a loop over cells/elements, as com-
monly done in FEM. We illustrate in this work how this simple
approach reduces significantly the computational cost associated
with the matrix structure creation and the assembly process.

Additionally, a widespread practice (both in FEM and in mesh-
free methods) is to store in memory the basis functions and their
derivatives for repetitive calculations required in nonlinear itera-
tive solvers, incremental loading, or evolution in time. In FEM, this
storage is insignificant because the basis functions of the parent
element are mapped to each physical element. Since this is not
the case in meshfree methods, the amount of memory and its
access can become a bottleneck and substantially reduce the code
efficiency, especially in large-scale problems. If meshfree basis
functions are not stored in memory but recomputed every time,
the computational cost can also increase significantly. To alleviate
this issue, we propose here a strategy that is a trade-off solution
between memory storage and computational time. The technique,
based on a data structure that stores only partial information about
the basis functions and an algorithm to reconstruct them when
needed, reduces considerably the memory usage at the expense
of a minimum increment in the overall computational cost. We
illustrate and exploit this concept on LME approximants.

The paper is organized as follows. In Section 2 we review the
basic technicalities for a meshfree method particularized to LME
approximants and the classical implementation to approximate
partial differential equations (PDEs). We then propose an algo-
rithm to speed-up the matrix assembly and an algorithm for the
compressed memory storage of LME approximants in Section 3.
We extensively test our proposals with numerical examples in Sec-
tion 4 and finish with some concluding remarks in Section 5.

2. A standard meshfree scheme

Let X ¼ fx1; x2; . . . ; xNg � Rd, for d ¼ 1;2;3, be an unstructured
set of nodes used to describe a domain X, and paðxÞ the meshfree
basis function associated to the a-th node, for a ¼ 1; . . . ;N. A con-
tinuous field U can be approximated as

UðxÞ ¼
XN

a¼1

paðxÞUa;

where Ua stand for the nodal coefficients. Here we adopt the LME
approximants as meshfree basis functions in a Galerkin method to
approximate a general PDE. They are nonnegative, smooth, satisfy
at least up to the first order consistency conditions and present a
weak Kronecker-delta property. We rely on a background mesh to
define the quadrature points, typically through a Gauss–Legendre
quadrature rule. Since this mesh is just required to place the Gauss
points, its requirements are less strict than in a mesh-based
method. We use here meshes made of triangles/tetrahedra in 2D/
3D, which we easily obtain via the library QHULL [39]. The proce-
dure needed to compute the system matrix in a Galerkin meshfree
approach requires mainly four steps: (i) neighborhood search, (ii)
computation of the basis functions, (iii) creation of the sparse
matrix structure and (iv) Gauss point-wise matrix filling. The
pseudocode shown in Algorithm 1 summarizes these four steps.
In the present work, we do not deal with solver performance. In
the following we briefly extend on the computational implications
of every step.

Algorithm 1. Pseudo-code for scheme based on a loop over
quadrature points (see Section 2).

(i) Determine the neighborhood nodal index set N X
y for

each Gauss point.
(ii) Compute shape functions (array pa).

(iii) Construct sparse matrix structure (arrays ia and ja).
(iv) Fill sparse matrix (array an) with the quadrature point

loop based algorithm.

The objective of step (i) is to compute the so-called neighbor
lists, which can be interpreted as the counterpart of the mesh con-
nectivity in FEM where the neighbor lists are given by the mesh
itself. In a meshfree scheme this is made by specialized algorithms,
i.e. neighbor searchers which identify the relationship between
the quadrature points and the nodes. We will refer to the neighbor
lists as primal and dual lists [28], which are complementary. In
particular, a dual list identifies the quadrature points that are
influenced by a particular node i.e. the quadrature points falling
within the effective support of a nodal basis function. Conversely,
the primal list contains the nodes that influence a particular
quadrature point.

Formally, let Y ¼ fy1; y2; . . . ; yLg � X be a set of quadrature
points. The dual list containing the nearest points from Y associ-
ated with a node xa 2 X can be defined as followsfN Y

xa
¼ fk 2 f1;2; ::; Lg j jyk � xaj < rag;

Basis func�on

Full support

Effec�ve support

Tol0

Fig. 1. Full support of some meshfree basis functions, such as local maximum entropy approximants, covers the convex hull of the computational domain. The effective
numerical support radius ra is determined by a cutoff basis function value Tol0 (left). Representation of two-dimensional LME approximants basis functions (right). Notice
the noninterpolant character and the smoothness of the basis functions, and the fulfillment of a weak Kronecker-delta at the boundary of the convex hull.

C. Peco et al. / Computers and Structures 150 (2015) 52–62 53



Download English Version:

https://daneshyari.com/en/article/510012

Download Persian Version:

https://daneshyari.com/article/510012

Daneshyari.com

https://daneshyari.com/en/article/510012
https://daneshyari.com/article/510012
https://daneshyari.com

