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a b s t r a c t

A novel hybrid method is developed to compute the effective properties of composites containing arbi-
trarily shaped inclusions. In this method, finite element analysis of a single inclusion representative vol-
ume element model is used to compute the Eshelby tensor of the inclusion. This tensor is substituted into
Mori–Tanaka model to compute the effective properties. Predictions by the hybrid method are compared
with the predictions by a pure analytical method as well as a pure numerical method. Results indicate
that the composites with triangular, rectangular and irregular section inclusions have significantly better
effective properties than the corresponding composites with circular section inclusions.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In order to achieve weight reduction, composite materials are
extensively used in many aerospace and automotive applications.
Effective properties of these materials depend on microstructural
parameters such as constituent material properties, inclusion vol-
ume fraction (Vf), inclusion spatial arrangement, inclusion orienta-
tion, inclusion coating and inclusion shape. Present study focuses
on the influence of inclusion shape on the effective properties of
composite materials.

Kim and Park [1] and Park et al. [2] experimentally investigated
the effective properties of C-section carbon fiber reinforced cemen-
titious composites; and their results indicated that these compos-
ites have better mechanical properties than the composites
reinforced with circular section (i.e. cylindrical) carbon fibers.
Experimental investigation by Xu et al. [3] showed that the com-
posites with kidney section carbon fibers had better interfacial
shear strength and interlaminar shear strength compared to those
with circular section carbon fibers. Liu et al. [4] have performed
experiments on the composites with triangular section carbon
fibers. They have shown that these composites have better flexural
strength and flexural modulus than those with circular section car-
bon fibers. Zhu and Beyerlein [5] have shown that the bone-shaped

short fiber reinforced composites have more strength and tough-
ness compared to the conventional short straight fiber reinforced
composites. Finite element (FE) analysis was used by Zhou et al.
[6] to obtain the optimum fiber shape that gives maximum stiff-
ness to the composite. From these studies, it is clear that the fiber
shape has a significant influence on the effective properties of
composites.

Many analytical methods [7–12] are available for computing
the effective properties of unidirectional (UD) composite materials.
Most of these methods are based on the concept of Eshelby tensor
[13]. The dilute Eshelby model [8] is accurate in predicting the
effective properties of composites with very low fiber volume frac-
tion. However, this method is not suitable for non-dilute compos-
ites. Effective properties of the non-dilute composites can be
computed by using analytical models such as the Mori–Tanaka
(MT) model [9,10], self-consistent model [11] and bounding mod-
els [12]. The main limitation of these analytical methods is that
analytical expressions for the Eshelby tensor are available only
for ellipsoidal [14] and polyhedral inclusions [15]. Therefore, in
these analytical methods, actual inclusions are replaced by equiv-
alent ellipsoidal inclusions with appropriately selected aspect
ratios. In the case of inclusions with complicated geometry, differ-
ent ellipsoidal inclusions are combined together to represent a sin-
gle inclusion [16,17]. In many cases, the equivalent ellipsoidal
inclusion may not accurately capture the effect of actual inclusion
shape on the effective properties. For example, replacing a circular
section inclusion with an equivalent ellipsoidal inclusion can lead
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to an error in the prediction of effective properties of composites
with high material property mismatch ratios [18].

Effective properties of composites can also be computed
through pure FE based numerical micromechanical approaches
[19–27]. Kari et al. [19] and Pan et al. [20] have used the FE based
approach to compute the effective properties of discontinuous
fiber reinforced (DFR) composites. ‘‘ArtiComp’’ program was devel-
oped by Srinivasulu et al. [21] to compute the effective properties
of DFR composites with straight fibers and curved fibers. Hine et al.
[22] have used Monte-Carlo procedures to compute the effective
properties of DFR composites. Mishnaevsky [23] has developed
the ‘‘Meso3D’’ program to compute the effective properties of par-
ticle reinforced composites. ‘‘Nanocomp 3D’’ program was devel-
oped by Wang et al. [24] to compute the effective properties of
nanocomposites. Zohdi [25] studied composite materials contain-
ing randomly oriented block-like and spherical shaped particulate
reinforcements. A computational method was developed to deter-
mine optimal geometrical parameters and mechanical properties
of particulate reinforcements to achieve the desired effective prop-
erties. In order to resolve the difficulties involved in the optimiza-
tion process, a statistical genetic algorithm was also developed
[26]. The pure FE based numerical approach is generic in nature;
there is no limitation on the inclusion shape. However, this method
is computationally expensive because a new FE analysis has to be
performed for every change in the microstructural parameters of
the composite. Therefore, although the pure numerical approach
is capable of computing the effective properties of the composites
with arbitrarily shaped inclusions, this approach demands for
extensive computational resources. Therefore, there is a need for
a more efficient method to compute the effective properties of
the composites with arbitrarily shaped inclusions.

In this study, a novel hybrid method is proposed to compute the
effective properties of composites with arbitrarily shaped inclu-
sions. In this method, Eshelby tensors of arbitrarily shaped inclu-
sion are computed through the FE based numerical approach.
This FE based Eshelby tensor is then substituted into the MT ana-
lytical model to compute the effective properties. This method is
computationally more efficient than the pure numerical approach.
The hybrid method is used to compute the effective properties of
composites reinforced with arbitrarily shaped inclusions such as
prolate spheroidal, oblate spheroidal, circular section, triangular
section, rectangular section and irregular section inclusions. The
results illustrate the influence of inclusion shape on the effective
properties of composites. For comparison purpose, the effective
properties computed by using the pure analytical method and
the pure numerical method are also presented.

2. Hybrid method

In the hybrid method, the equivalent Eshelby tensor (nHYB) of an
arbitrarily shaped inclusion is computed through the FE based
micromechanics approach. Six inclusion shapes: prolate spheroi-
dal, oblate spheroidal, circular section, triangular section, rectan-
gular section and irregular section inclusions are considered
(Fig. 1). In this method, a large cubic representative volume ele-
ment (RVE) model of a composite material containing a single
inclusion is generated. Homogeneous Boundary Conditions (HBCs)
[28] are applied on the boundary surfaces of the RVE model. HBCs
are obtained from Eq. (1),Z
@V
ðti � �rijnjÞðui � �eijxjÞdX ¼ 0 ð1Þ

In the above equation, oV represents the boundary surfaces of RVE,
ti is the traction, ui is the displacement, xj is the position, nj is the
surface normal, �eij is the average strain and �rij is the average stress.

Three extensional and three shear deformation load cases are used
in this analysis. The first load case represents extension loading in
longitudinal direction. In this load case, only e11 ¼ eapp

11 is nonzero.
eapp

11 represents the applied strain in longitudinal direction. HBCs
for this load case are as follows,
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This implies,

u1 ¼ eapp
11 x1; u2 ¼ 0 & u3 ¼ 0 ð3Þ

FE analysis is performed by using ABAQUS/standard implicit solver
[29] to obtain the stress and strain distributions inside the RVE
model. Eq. (4) is used to obtain the average strain ðef

ijÞ in the
inclusion.
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1
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Z
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ð4Þ

In the above equation, V f represents the inclusion volume, e f
ij repre-

sents the strain in inclusion, NE represents the number of elements
in inclusion and dV represents the element volume.

The average strain in the composite ð�eÞ and average strain in the
inclusion ð�ef Þ are related to each other through strain concentra-
tion tensor (AHYB) as,

�ef ¼ AHYB�e ð5Þ

From the first load case, components of AHYB are computed as,
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Other components of AHYB are computed from the remaining five
load cases. The strain concentration tensor of a dilute composite
can also be analytically computed through the dilute Eshelby model
[8].

Adil ¼ ½I þ nC�1
m ðCf � CmÞ�

�1 ð7Þ

In the above equation, Cm and Cf represent elastic stiffness tensor of
matrix and inclusion materials respectively and I represents a
fourth order identity tensor. By replacing Adil in Eq. (7) with AHYB,
the FE based Eshelby tensor (nHYB) is obtained as,

nHYB ¼ ðAHYB�1

� IÞðC�1
m Cf � IÞ

�1
ð8Þ

In contrast to analytical methods, computation of nHYB through the
FE based approach is not limited by the inclusion shape. After com-
puting nHYB, it is substituted into the MT analytical model [9,10] to
compute the effective properties of non-dilute UD DFR composites
with arbitrarily shaped inclusions. As per the MT method, elastic
stiffness tensor (CMT) of a UD DFR composite is given by,

CMT ¼ VmCm þ
Xn

f¼1

Vf Cf I þ nHYBC�1
m ðCf � CmÞ

h i�1
 !

� VmI þ
Xn

f¼1

Vf I þ nHYBC�1
m ðCf � CmÞ

h i�1
 !�1

ð9Þ

In the above equation, Vm and Vf represent volume fractions of
matrix and inclusions respectively. Summation indicates that the
inclusions can be of different shapes. Finally, the effective elastic
material properties are computed from CMT.
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