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a b s t r a c t

This paper discusses the similarity of meshless discretizations of Peridynamics and Smooth-Particle-
Hydrodynamics (SPH), if Peridynamics is applied to classical material models based on the deformation
gradient. We show that the discretized equations of both methods coincide if nodal integration is used.
This equivalence implies that Peridynamics reduces to an old meshless method and all instability prob-
lems of collocation-type particle methods apply. These instabilities arise as a consequence of the nodal
integration scheme, which causes rank-deficiency and leads to spurious zero-energy modes. As a result
of the demonstrated equivalence to SPH, enhanced implementations of Peridynamics should employ
more accurate integration schemes.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The Peridynamic theory, originally devised by Silling [1], is a
nonlocal extension of classical continuum mechanics, which is
based on partial differential equations. Since partial derivatives
do not exist on crack surfaces and other singularities, the classical
equations of continuum mechanics cannot be applied directly
when such features are present. In contrast, the Peridynamic bal-
ance of linear momentum is formulated as an integral equation,
which remains valid in the presence of material discontinuities.
Therefore, the Peridynamic theory can be applied directly to
modeling both bulk and interface properties, using the same math-
ematical model. Additionally, Peridynamics is readily implemented
in a meshless formulation, which facilitates the simulation of large
deformations when compared to the traditional mesh-based
Finite-Element method used for simulating solid mechanics in
the classical continuum theory [2].

With these desirable features, Peridynamics has received con-
siderable attention by researchers interested in numerically
describing fundamental crack growth and failure effects in brittle
materials [3–6]. However, the scope of the original Peridynamic
formulation included only so-called bond-based models [7] which
were limited to a fixed Poisson ratio for linear isotropic materials
and could not describe true plastic yielding. Further development
of the theory led to state-based models [8], which can, in principle,
describe all classic material behavior. In particular, the state-based
theory offers a route to approximating the classical deformation

gradient, which can be used to obtain a classical stress tensor.
The stress tensor can then be converted into nodal forces using a
Peridynamic integral equation. This promising situation, i.e., the
ability to use classical material models with a method that remains
valid at material discontinuities, has prompted a number of studies
where plastic yielding, damage, and failure was simulated using
this new meshless method [9,10].

However, there exists a demand for studies which compare
Peridynamics to other meshless methods. While the theoretical
correspondence of Peridynamics with classical elasticity theory
has been established [11], no information is available on the accu-
racy of the discretized Peridynamic expression suitable for com-
puter implementation. Relevant questions that need to be
addressed include, but are not limit to, whether linear fields can
be exactly reproduced by the discretized theory, and what the
order of convergence is when Peridynamic solutions are compared
against exact results. Little is known about how common problems
encountered with other meshless methods, e.g., the tensile insta-
bility [12] or the rank deficiency problem [13] affect Peridynamics.
As an exception to this general observation, Bessa et al. [14] have
published a study which demonstrates the equivalence of state-
based Peridynamics and the reproducing Kernel Particle Method
(RKPM), if nodal integration is used. However, no published studies
are available to the best of this author’s knowledge, which compare
Peridynamics to other meshless methods.

The goal of our paper is to elucidate on some properties of Peri-
dynamics with respect to other meshless methods. In particular,
we establish that the discrete equations of the Peridynamic formu-
lation using classical material models is identical to a very
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well-known meshless technique: Smooth Particle Hydrodynamics
(SPH) in the Total-Lagrangian formulation. This equivalence facili-
tates understanding of Peridynamics using the large body of liter-
ature already published for other meshless methods, see e.g.
[15,16]. The key observations of our work address two issues: (i)
Discretizations of Peridynamics directly arrive at correct equations
which conserve linear and angular momentum. These features can
only be obtained in SPH by assuming ad hoc corrections such as
explicit symmetrization. (ii) All of the problems that apply to col-
location-type particle methods also apply to Peridynamics if this
theory is discretized using nodal integration.

The remainder of this paper is organized as follows: we begin
by deriving the fundamental expressions of the SPH approximation
including the most important corrections for this method, which
allow it to be used with the minimal level of accuracy required
for solid mechanics simulations. Then, the essential Peridynamic
expressions required for simulating classical material models are
derived. Building on this foundation, the equivalence of SPH and
this particular variant of Peridynamics is shown. Finally, the impli-
cations of this observation are discussed and Peridynamics (with
classical material models) is characterized using the established
terminology encountered in the SPH literature.

2. Total Lagrangian SPH

Smooth Particle Hydrodynamics [17] was originally devised as a
Lagrangian particle method with the smoothing kernel moving
with the particle, thus redefining the interaction neighborhood
for every new position the particle attains. In this sense, the kernel
of the original SPH formulation has Eulerian character, as other
particles move through the interaction neighborhood. The tensile
instability [12] encountered in SPH, where particles clump
together under negative pressure conditions, has been found to
be caused by the Eulerian kernel functions [13]. Consequently,
Total Lagrangian formulations were developed [18–20], which
use a constant reference configuration for defining the interaction
neighborhood of the particles. see Typically, the initial, unde-
formed configuration is taken for this purpose. In the following,
this concept and the associated nomenclature is briefly explained
with the limited scope of obtaining SPH expressions that are to
be compared with the Peridynamic expressions. For a more
detailed derivation, the reader is referred to the works cited above.

2.1. Total Lagrangian formulation

In the total Lagrangian formulation, conservation and constitu-
tive equations are expressed in terms of the material coordinates
X, which are taken to be the coordinates of the initial, undeformed
reference configuration. A mapping between the current coordi-
nates, and the reference coordinates describes the body motion
at time t:

x ¼ /ðX; tÞ; ð1Þ

Here, x are the current, deformed coordinates and X the reference
(Lagrangian) coordinates. The displacement u is given by

u ¼ x� X; ð2Þ

The conservation equations for mass, impulse, and energy in the
total Lagrangian formulation are given by

qJ ¼ q0J0; ð3Þ

€u ¼ 1
q0

$0 � P; ð4Þ

_e ¼ 1
q0

_F : PT ; ð5Þ

where J and J0 are the current and initial Jacobian determinants. q is
the current mass density and q0 is the initial mass density, P is the
nominal stress tensor (the transpose of the first Piola–Kirchhoff
stress tensor), e is the internal energy, $0 is the gradient or diver-
gence operator expressed in the material coordinates, and F denotes
the deformation gradient,

F ¼ dx
dX
¼ du

dX
þ I; ð6Þ

2.2. The SPH approximation

The SPH approximation for a scalar function f in terms of the
Lagrangian coordinates can be written as

f ðXiÞ ¼
X
j2S

V0
j f ðXjÞWi Xij

� �
: ð7Þ

The sum extends over all particles within the range of a scalar
weight function Wi, which is centered at position Xi and depends
on the distance between coordinates X i and Xj;Xij ¼ kXj � Xik. V0

is the volume associated with a particle in the reference configura-
tion. The weight function is typically chosen to be radially symmet-
ric and have compact support, i.e., it includes only neighbors within
a certain radial distance. This domain of influence is denoted S.

The SPH approximation of a derivative of f is obtained by oper-
ating directly with the gradient operator on the kernel functions,

$f ðXiÞ ¼
X
j2S

V0
j f ðXjÞ$Wi Xij

� �
; ð8Þ

where the gradient of the kernel function is defined as follows:

$WiðXijÞ ¼
dWðXijÞ

dXij

� �
Xj � Xi

Xij
: ð9Þ

The conditions for the zeroth- and first-order completeness of
the SPH approximation are stated as follows:X
j2S

V0
j Wi Xij

� �
¼ 1 ð10Þ

X
j2S

V0
j $Wi Xij

� �
¼ 0 ð11Þ

In the simple form as stated here, neither of the completeness con-
ditions are fulfilled by the SPH approximation. An ad hoc improve-
ment consists in adding Eq. (11) to Eq. (8), such that a symmetrized
approximation for the derivative of a function is obtained,

$f ðXiÞ ¼
X
j2S

V0
j f ðXjÞ � f ðXiÞ
� �

$Wi Xij
� �

: ð12Þ

The symmetrization does not result in first-order completeness,
however, it yields zeroth-order completeness for the derivatives
of a function.

2.3. Restoring first-order completeness

In order to fulfill first-order completeness, the SPH approxima-
tion has to reproduce the constant gradient of a linear field. A num-
ber of correction techniques [21–23] exploit this condition as the
basis for correcting the gradient of the SPH weight function,X
j2S

V0
j ðXj � XiÞ � $WiðXijÞ¼

! I; ð13Þ

where I is the diagonal unit matrix. Based on this expression, a cor-
rected kernel gradient can be defined:

~$WiðXijÞ ¼ L�1
i $WiðXijÞ; ð14Þ

which uses the correction matrix L, defined as:
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