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a b s t r a c t

This study makes the first attempt to apply a recently developed modified method of fundamental solu-
tions (MFS) without fictitious boundary, which is named as the singular boundary method (SBM), to the
solution of plane linear elastic and viscoelastic wave problems. Like the standard MFS, the SBM applies
the fundamental solutions of the governing equations of interest as the basis functions. Unlike the stan-
dard MFS, the SBM, however, does not require the fictitious boundary outside physical domain to avoid
the singularity of the fundamental solution and instead directly places the source points on the physical
boundary coinciding with collocation points via the concept of origin intensity factors. To demonstrate
the effectiveness of the SBM for plane elastic and viscoelastic wave problems, several numerical examples
are given in comparison with analytical solutions, and numerical results of the MFS and the finite element
method.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Numerical simulation of wave propagation problems in elastic
and viscoelastic media has attracted much attention in diverse sci-
entific and engineering fields. The most commonly used numerical
methods to solve such wave problems are element-based methods
such as the finite element method (FEM) [1–3] and the boundary
element method (BEM) [4–8]. The FEM is a domain-type method
which discretizes the whole domain into a large number of small
elements. And the variable of each element is described by the
shape functions. Although the FEM is very successful for solving
a variety of practical engineering problems, the task of mesh gen-
eration is often arduous, especially for high dimensional and com-
plicated domain problems. In contrast to the FEM, the BEM appears
as an attractive and promising numerical technique. The method
has the advantage of reducing the dimensionality of the problem
by one and is a high accuracy method for a wide class of problems,
although the singular kernels are employed and the system
matrices are non-symmetric.

Besides the BEM, the other boundary-type methods such as the
method of fundamental solutions (MFS) [9–11], boundary knot
method (BKM) [12], boundary particle method (BPM) [13],

boundary node method (BNM) [14], regularized meshless method
(RMM) [15–17], modified method of fundamental solutions
(MMFS) [18], boundary distributed source method (BDS) [19],
and singular boundary method (SBM) [20,21] are also developed
in the past decades. These boundary-type methods are
conceptually and mathematically simpler than the BEM but have
less theoretical foundation. Their validity and feasibility are usually
verified by numerical experiments. Among these methods, the MFS
is considered as one of the first proposed and highly popular
method with the merits of being truly meshfree, integration free,
easy to implement and highly accurate. Its basic idea is to use
the fundamental solutions of the governing equation of interest
as the basis functions and place the source points on the fictitious
boundary away from the physical boundary to avoid the singular-
ity of the fundamental solution. Despite great efforts on the choice
of fictitious boundary [22,23], the placement of the fictitious
boundary remains tricky for complex domain problems.

In stark contrast to the MFS, the recently developed modified
MFS, namely, the SBM, avoids the fictitious boundary by introduc-
ing the concept of the origin intensity factors (OIFs) which allows
the source points to coincide with the collocation points on the
physical domain. The regularization techniques [24–26] used in
the BEM are employed to determine the OIFs for Neumann bound-
ary conditions, and an inverse interpolation technique [20,21] is
applied for the calculation of the OIFs for Dirichlet boundary con-
ditions. The SBM maintains the merits of the MFS and has been
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applied in many engineering problems such as steady-state heat
conduction [27], potential [28], plane strain elastostatic [29],
acoustic [30,31], water wave [32], Stokes flow [33], and ultra-
thin structural problems [34]. In this study, we make the first
attempt to apply the SBM for solving plane linear elastic and vis-
coelastic wave problems.

The rest of the paper is organized as follows. In Section 2, the
basic equations of harmonic elastic and viscoelastic problems are
briefly introduced, followed by an introduction of the SBM approx-
imation. In Section 3, we present several numerical experiments
compared with the analytical solutions and the numerical solu-
tions of the MFS and FEM to show the validity and efficiency of
the SBM formulation. Finally, in Section 4, some conclusions are
drawn upon the results reported in this study.

2. Basic equations and the SBM formulation

Without the loss of generality, we consider the motion of a
homogeneous isotropic constant thickness plane viscoelastic med-
ium in the frequency domain referred to the Cartesian coordinate
system where x1 and x2 denote the horizontal and vertical
coordinates, respectively. Let u1 and u2 represent the displace-
ments in the x1 and x2-directions, eik; i; k ¼ 1;2 be the strains
and rik; i; k ¼ 1;2 be the stresses. The strains are related to the
displacement gradients by the means of

eik ¼ 1
2

ui;k þ uk;i

� �
; ð1Þ

where ðÞ;i denotes derivative with respect to xi.
The constitutive relationship between strains and stresses can

be expressed as [12]

rik ¼ kelldik þ 2leik; ð2Þ
where k ¼ vEð1þ gjÞ=½ð1þ vÞð1� 2vÞ� and l ¼ Eð1þ gjÞ=½2ð1þ vÞ�
are complex-valued Lamé-type elastic constants, j ¼

ffiffiffiffiffiffiffi
�1

p
the

imaginary unit, E the Young’s modulus, v the Poisson’s ratio, g the
damping ratio and dik the Kronecker delta.

The equations of motion in the absence of body forces can be
written in the following form [35,36]:

@2u1ðxÞ
@x21

þð1�vÞ
2

@2u1ðxÞ
@x22

þð1þvÞ
2

@2u2ðxÞ
@x1@x2
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Eð1þgjÞ u1ðxÞ¼0;

ð3Þ
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ð4Þ
where x 2 X; X is the problem domain, q the mass density,
x ¼ 2pf the temporal frequency and f the frequency.

The boundary conditions for Eqs. (3) and (4) on C are

ui ¼ �ui on Cu ðdisplacement boundary conditionsÞ; ð5Þ

ti ¼ riknk ¼ �ti on Ct ðtraction boundary conditionsÞ; ð6Þ
where C ¼ @X ¼ Cu [Ct; nk is the direction cosines of the outward
normal on the boundary C.

For the multilayer domain problems, continuity conditions are

imposed at the interface between two adjacent subdomains XðaÞ

and XðbÞ:

uðaÞ
i ðxÞ ¼ uðbÞ

i ðxÞ
tðaÞi ðxÞ ¼ �tðbÞi ðxÞ

(
; x 2 Cða;bÞ; ð7Þ

where Cða;bÞ is the interface between XðaÞ and XðbÞ.

The fundamental solutions for the displacements of the systems
(3) and (4) are given by

Gikðx; sÞ ¼ Adik � Br;ir;k; i; k ¼ 1;2; ð8Þ

where

A ¼ 1
2px2q

k2s K0ðjksrÞ þ
jK1ðjkprÞ

r
kp � jK1ðjksrÞ

r
ks

� �
;

B ¼ 1
2px2q

k2s K0ðjksrÞ � k2pK0ðjkprÞ þ 2
jK1ðjkprÞkp

r
� 2

jK1ðjksrÞks
r

� �
;

and Kiði ¼ 1;0Þ are ith order modified Bessel functions of the second

kind, ks ¼ x
ffiffiffiffiffiffiffiffiffi
q=l

p
, kp ¼ x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q=ðkþ 2lÞp

, r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1 � s1Þ2 þ ðx2 � s2Þ2

q
the distance between the source point s ¼ ðs1; s2Þ and the field point
x ¼ ðx1; x2Þ, r;i ¼ ðxi � siÞ=r; i ¼ 1;2. Furthermore, the fundamental
solutions for the tractions are

Tik ¼ k A0 � B0 � B
r

� �
r;kni þ l A0 � B

r

� �
r;ndik þ r;ink

	 
�

�2B
r
r;kni þ 2 �B0 þ 2B

r

� �
r;ir;kr;n

�
; ð9Þ

where r;n ¼ r;1n1 þ r;2n2 and ()0 denotes the first derivative with
respect to r.

In the SBM, the displacements and tractions are approximated
by the linear combinations of fundamental solutions for displace-
ments and tractions as follows:

uiðxmÞ ¼
X2
k¼1

XN
n¼1

aknGikðxm; snÞ; xm 2 Cu [X; ð10Þ

tiðxmÞ ¼
X2
k¼1

XN
n¼1

aknTikðxm; snÞ; xm 2 Ct; ð11Þ

where sn is the nth source point on the boundary and akn is the
unknown coefficient to be determined.

Note that the fundamental solutions become singular when xm

and sm coincides on the physical boundary. To remove these singu-
larities of the fundamental solutions, the concept of the origin
intensity factors [21,29] was proposed in the SBM to replace the
singular terms as follows

uiðxmÞ ¼
X2
k¼1

XN
n–m

aknGikðxm; snÞ þ akm
~Gikðxm; smÞ

" #
; xm 2 Cu; ð12Þ

tiðxmÞ ¼
X2
k¼1

XN
n–m
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~Tikðxm; smÞ

" #
; xm 2 Ct ; ð13Þ

where ~Gikðxm; smÞ and ~Tikðxm; smÞ are origin intensity factors.
In order to obtain the origin intensity factors for traction

boundary conditions, the subtracting and adding-back technique
is employed as follow

tiðxmÞ¼
X2
k¼1

XN
n–m

aknTikðxm;snÞþakmTikðxm;smÞ
" #

¼
X2
k¼1

XN
n–m

aknTikðxm;snÞþakmTikðxm;smÞþakm

XN
n¼1

T ðeÞ
ik ðsn;xmÞ LnLm

 !" #

¼
X2
k¼1

XN
n–m

aknTikðxm;snÞþakm Tikðxm;smÞþTðeÞ
ik ðsm;xmÞ

� �"

þakm

XN
n–m

T ðeÞ
ik ðsn;xmÞ LnLm

 !#
ð14Þ

in which
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