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a b s t r a c t

The analysis and benchmarking of three meta-heuristic algorithms to determine laminate stacking
sequences is presented. The benchmarking is undertaken for a simply supported composite laminate sub-
ject to strength and buckling constraints. A genetic algorithm, ant colony and particle swarm optimiza-
tion are considered. It is shown that for inherently discrete sets of ply orientations, ant colony
optimization outperforms the other algorithms. For continuous problems, a particle swarm may be the
most appropriate. It is further shown that selection of an appropriate algorithm may be indeed problem
dependent.

� 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Driven by environmental and economic targets, there is a great-
er need for low weight structures in civil and military aircraft. As
such, the aviation industry is rapidly employing composite
materials for primary structures such as wings and fuselages. The
excellent performance of composite materials has been well publi-
cised in recent years. Studies have shown they possess excellent
stiffness and strength properties [1,2]. Despite their insertion in
high profile aircraft (e.g. Boeing 787), there are potential efficiency
gains to be made by undertaking stacking sequence (lay-up) opti-
mization and reducing dependence on the use of homogeneous
properties, or ‘‘black metal”.

Lay-up optimization of laminated composites has evolved sig-
nificantly over the past 25 years. For further details, see Ref. [3].
Ghiasi et al. [4] recently provided a detailed review of the various
optimization techniques which have been successfully applied to
laminated composite design optimization. Recent focus has been
on the optimization of laminated composites using lamination
parameters and/or meta-heuristic approaches. A two level optimi-
zation approach has recently been adopted by Herencia et al. [3,5]
and Bloomfield et al. [6,7] to solve the stacking sequence problem.
At the first level, gradient based methods were used to determine
optimal lamination parameters and plate thicknesses. All con-
straints such as strength and buckling were embedded at this level
and necessary trade-offs considered. Lamination parameters are
particularly useful intermediate design variables in the optimiza-

tion of laminated composites because the constraining relation-
ships between lamination parameters form a convex feasible
region [8,9]. Consequently, where the objective function and con-
straints are a convex function (in minimization problems) of the
design variables, gradient based methods guarantee that global op-
tima are obtained. At the second level of the optimization a meta-
heuristic optimizer was used to obtain a stacking sequence which
satisfies the set of design constraints. It is important to note that at
the second level the fitness function is highly non-convex. The
non-convexity of the fitness function arises due to the mapping be-
tween ply orientations, lamination parameters and the fitness
function. As such, gradient based methods may only find local op-
tima and thus not entirely appropriate. Motivated by this shortfall
several meta-heuristic optimization algorithms are considered.
Specifically, a genetic algorithm (GA), ant colony optimization
(ACO) and particle swarm optimization (PSO) are used. The chief
benefit of using a meta-heuristic algorithm is that gradient infor-
mation is not required. Whilst local optima remain a problem,
the ability to escape local optima can be studied and certain
parameters adjusted to improve the performance of each method.

Lay-up optimization is inherently discrete. In laminate design,
ply thickness is generally fixed and ply orientations take a range
of discrete values. Determining a stacking sequence of a given plate
thickness using ply orientations as design values is a combinatorial
problem. For a laminate of n plies where each ply orientation can
take a value in a set of size m, it follows that the number of possible
designs is mn. As such, enumeration quickly becomes increasingly
difficult due to the combinatorial explosion of possible lay-ups. To
overcome this problem, population based meta-heuristics have
again been proposed. The success of GAs in composite optimization
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have been well documented. For example, Le Riche and Haftka
[10], Nagendra et al. [11], Liu et al. [12], and Herencia et al.
[13,14] have all successfully applied GAs, both directly and as a
multi-level approach, to composite optimization. Moreover, GAs
naturally lend themselves to discrete variables as each gene in a
GA can represent a single angle in a lay-up. Despite the popularity
of GAs, they may be computationally less efficient than other
methods and often require extensive parameter refinement to en-
sure timely convergence. In contrast, particle swarm optimization
(PSO), inspired by the notion of birds flocking (Kennedy and Eber-
hart [15]) may require less computational effort and parameter
refinement. Initially designed for continuous domains, the para-
digm has been successfully applied to discrete problems such as
lay-up optimization. Bloomfield et al. [7] demonstrated the suit-
ability of the PSO with respect to lay-up optimization using dis-
crete variables by rounding the continuous values to the nearest
discrete point in the set of possible ply orientations. Furthermore,
Bloomfield et al. [7] reduced the number of parameters of the stan-
dard PSO model by introducing a new random parameter. The
authors showed efficiency gains over the standard PSO model by
encouraging and maintaining diversity in the swarm. Suresh
et al. [16] further highlighted the benefits of a discrete PSO applied
to a multi-objective composite box design and highlighted the
gains in using a PSO over a GA. Kathiravan and Ganguli [17] re-
cently used a gradient based method and PSO to determine lami-
nate stacking sequences to satisfy strength failure criteria in a
box beam. The analysis highlighted that a PSO was able to deter-
mine a global optima, whereas a gradient based optimizer would
only converge to local optima. Despite this shortcoming, the local
optima were often good points and could be used as starting points
in the PSO. Omkar et al. [18] successfully applied a variant of the
standard PSO vector evaluated particle swarm optimization (VEP-
SO) model introduced by Kennedy and Eberhart [15]. The authors
solved a multiple objective problem of minimizing weight and
the total cost of the composite structure subject to three failure cri-
teria: failure mechanism based failure criteria, maximum stress
failure criteria and the Tsai–Wu failure criteria. Recently, the ant
colony optimization (ACO) paradigm [19] has been receiving grow-
ing interest. It is noted that the ACO paradigm is specifically de-
signed for combinatorial problems such as stacking sequence
optimization. This is in direct contrast to the PSO which was
designed for continuous domains. Aymerich and Serra [20,21]
demonstrated the effectiveness of the ACO in maximizing the

buckling load of a composite plate (with different boundary condi-
tions) subject to strength constraints. The authors also showed sig-
nificant efficiency gains over a GA. Bloomfield et al. [7] also used an
ACO to determine laminate stacking sequences subject to strength
and buckling constraints. In Ref. [21], it was shown that a colony
could rapidly determine stacking sequences and, furthermore, that
this approach was robust and reliable. Naturally, the implementa-
tion of the aforementioned optimization algorithms can dramati-
cally affect the performance of the algorithm. Whilst a number of
variants of each meta-heuristic approach exist, the versions which
are compared and contrasted are those given in Ref. [13,21,7] for
the GA, ACO and PSO, respectively. These are chosen as they repre-
sent current state-of-the-art implementations of the aforemen-
tioned techniques.

In the paper, the GA, PSO and ACO are analyzed and compared
in detail. The analysis aims to show two key points, (a) how the
number of possible ply orientations affects convergence and (b)
how does laminate thickness (complexity due to number of plies)
affect convergence. Through an efficiency, reliability and robust-
ness analysis, it will be shown that an ACO and PSO offer the best
routes to determining laminate stacking sequences. It is further ob-
served that the selection of the optimization technique may be
problem dependent.

2. Laminate constitutive equations

Tsai et al. [1] and Tsai and Hahn [2] characterized the stiffness
properties of laminated composites as linear functions of material
invariants and at most 12 lamination parameters. Since the plate is
symmetric and thus does not exhibit any bending-extension cou-
pling, the constitutive equation for a symmetric laminated plate
using classical laminate theory (e.g. Ref. [2]) is given, by,
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where N is the vector of in-plane loads, M is a vector of resultant
out-of-plane moments, e0 is the vector of mid-plane strains and j
is the vector of plate curvatures. The in-plane and out-of-plane stiff-
ness matrices are defined in terms of lamination parameters and
material invariants,

Nomenclature

Aij components of the in-plane stiffness matrix
A cross sectional area of the plate
a plate length
b plate width
ci weighting factors
Dij components of the out-of-plane stiffness matrix
E11, E22 longitudinal and transverse Young’s moduli
F fitness function
G12 shear modulus
h plate thickness
M vector of out-of-plane moments
ni number of each ply orientation in the lay-up
N vector of in-plane loads
Ni load per unit width in the i direction
Qij components of the reduced stiffness matrix
ri random weighting factors
Ui material invariants
s symmetric

vij(t) velocity of particle i in dimension j at discrete
time step t

xi(t) position of particle i at discrete time step t
yi(t) local best position of particle i discrete time step t
ŷðtÞ global best position at discrete time step t
z normalized through thickness co-ordinate
aij ant routing table
e0 vector of mid-plane strains
nA;D

i lamination parameters ði ¼ 1 . . . 4Þ
j vector of plate curvatures
sk

ij pheromone deposited by ant k on arc ij
q density of material

q
_

pheromone evaporation coefficient
v12 Poisson’s ratio
ui ith design envelope of ply orientations
x swarm inertia coefficient
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