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a b s t r a c t

In this paper the local buckling of cylindrical shell under torsion is discussed. The Hamiltonian system
approach is employed to analyze the propagation of shear wave. In this system, critical torsional loads
and buckling modes are reduced to a problem of eigenvalues and eigensolutions of increasing orders.
Buckling modes are divided into two types, the local torsional buckling modes and the helical buckling
modes. For short-time shear wave propagation, local torsional buckling occurs easily. On the contrary,
the helical buckling modes appear when the wave propagates for a longer time and these modes corre-
spond to the first-order eigensolution.

� 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Cylindrical shells are simple yet very important structural com-
ponents in engineering applications. The stability of shell struc-
tures, e.g. shell buckling, is a fundamental problem in engineering
design. Many papers have described the deformation of different
kinds of cylindrical shells under various loadings. For example, Ross
et al. [1] and Blachut and Jaiswal [2] investigated cylinders under
external pressure through numerical and experimental approaches
and theoretical methods. Cylindrical shells under the action of
uniform axial compression and air blast loading conditions were
presented [3,4].

In this context, the behavior of torsional buckling is an interesting
issue but it receives relatively little attention than compression
buckling. Pioneering works on approximate solutions for shell buck-
ling were reported by Donnell [5]. Lundquist [6] and Nash [7] did
some buckling experiments but it was Yamaki [8] who conducted
precise experimental studies and reported approximate solutions
that were in reasonable agreement with experimental results. These
prior works were restricted to elastic static buckling of cylindrical
shells. In recent years, there were more studies on the dynamic tor-
sional buckling of cylindrical shells. There were some analyses for
torsional buckling of cylindrical shells or bars made of different
materials [9–13] and Mao and Lu [15] studied the elastic–plastic
buckling with a deep thick-shell model. Buckling and post-buckling
of cylindrical shell was also considered [16–18]. Experimental

studies were carried out by Ma et al. [19] on dynamic plastic buck-
ling of circular cylindrical shells under impact torque. The experi-
mental results of static plastic torsional buckling of circular
cylindrical shells were presented and discussed. Cylindrical shells
subjected to combined axial and torsion loading were also investi-
gated by a numerical approach and also in an experiment [20–23].

One of the buckling modes for long cylindrical shells is the
purely flexural mode similar to the classical buckling of a straight
rod. Such flexural buckling is well understood. Other aspects such
as local buckling and global buckling of cylindrical shells under
axial impact are discussed in many papers. Silvestre [24] dis-
cussed the buckling behavior of elliptical cylindrical shells and
tubes under compression. He analysed the local and global buck-
ling behavior of elliptical hollow section (EHS) members which
were subjected to compression in an effort to illustrate the for-
mulation of Generalised Beam Theory (GBT). By quasi-static and
dynamic tests, Jensen et al. [25] studied the transition between
progressive and global buckling of axially loaded square alumin-
ium tubes. Energy absorption was found to be dependent very
much on the collapse mode. Paimushin [26] reported details of
local and global buckling under combined loads. He showed the
existence of previously unknown torsional, flexural, and tor-
sional–flexural buckling modes for cylindrical shells which were
subjected to simultaneous compression and external pressure.
He also concluded that before the classical buckling took place,
the torsional buckling for relatively short shells with low shear
rigidity in the tangent plane could occur. Other buckling modes
occured for relatively long shells. Comparatively, research for lo-
cal and global torsional buckling for cylindrical shells has been
very insufficient.
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Unlike the traditional solution methodology using the Lagrange
system formulation in the Euclidian space, Xu et al. [27–29] devel-
oped a new Hamiltonian system approach to study buckling of
shell under axial impact [29–32]. New symplectic elasticity ap-
proach has also been applied for deriving exact analytical solutions
of beams and rectangular plates [33–36]. In this paper, the Hamil-
tonian system approach is generalized to study dynamic buckling
of cylindrical shell under torsional impact. The factors which influ-
ence the buckling modes are fully investigated and discussed.

2. Hamiltonian system and dual equations

Consider an homogeneous elastic cylindrical shell (Fig. 1) with
radius r, thickness h, length l, Young’s modulus E and Poisson’s ra-
tio l.

Using the circular cylindrical coordinate system (r,h,x), the con-
stitutive relations can be expressed as
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where D = Eh3/[12(1 � l2)] and K = Eh/(1 � l2). The Lagrange func-
tion, which consists of membrane energy, bending energy, kinetic
energy and work of external load, is
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where Txh is the external moment or torsion. Bases on the Hamilto-
nian principle, the equation of variation is expressed as

d
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From Eq. (3), the governing equations in the Lagrangian system can
be obtained directly as [14,15]
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As a result of cylindrical shells under impact torque, displace-
ments u and w can be ignored prior to shell buckling as compared
to displacement v in the second equation of Eq. (4). For uniform
torsional impact at the end of shell, the torsional wave propagates
along the central axis before buckling occurs. Hence the torsional
wave equation is

c2 @
2v
@x2 �

@2v
@t2 ¼ 0; ð5Þ

where c ¼
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is the wave velocity. For a

thin shell, c �
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p
. The solution of Eq. (5) can be ob-

tained easily and the distribution of shear stress can be derived at
the same time.

The following dimensionless parameters X = x/r, W = w/r,
U = u/r, V = v/r, L = l/r, Tcr = Txhr

2/D and parameters c = 12(r/h)2,
T = ct/r are adopted. Let an over-dot denote differentiation with
respect to h, namely _ð Þ � @ð Þ=r@h in which the h-coordinate
can be taken as a time-equivalent coordinate, @( )/@X � @X( )
and @( )/@T � @T( ). Because shell buckling with perturbation
equations is considered, the kinetic energy can be ignored. Let
the bending angle be u ¼ � _W þ V , such that the dimensionless
Lagrange function can be expressed as
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Nomenclature

c c �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E=½2qð1þ lÞ�

p
, wave speed

D, K K = Eh/(1 � l2), D = Eh3/12(1 � l2), shell flexural rigidity
and stiffness

E Young’s modulus
H Hamiltonian function
H Hamiltonian operator matrix
kx, kh, kxh bending and torsional strains on the neutral surfaceeL Lagrange function
Mx, Mh, Mxh bending and torsional moments
Nx, Nh, Nxh internal stresses and shear stresses

q, p mutually dual vectors
(r,h,x) circular cylindrical coordinate
Txh external moment or torsion
(w,v,u) displacements
ex, eh, exh membrane strains and shear strains on the neutral sur-

face
l Poisson’s ratio
q material density

Fig. 1. Geometrical parameters of a cylindrical shell with torsional impact.
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