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a b s t r a c t

This work presents the detailed formulation of a hybrid time–frequency domain Green approach method
for the solution of structural dynamic problems. A step-by-step time-domain solution procedure is estab-
lished, based on the convolution between the Green functions of the problem and the vector of external
loads. The Green functions are implicitly calculated in the frequency domain. The accuracy is significantly
improved when compared with traditional direct integration methods, or with other methods based on
the Green approach. This is due to the accurate calculation of the Green functions in the frequency
domain, and to enhancements in the representation of the convolution integral.

� 2009 Elsevier Ltd. All rights reserved.

1. Introduction

1.1. Context: time-domain solution procedures

Classical numerical integration methods for the solution of
equilibrium equations in dynamic analysis are based on the use
of finite-difference operators (or arbitrarily defined functions), that
define the variation of the unknown values of displacements,
velocities and accelerations within each time interval [1]. For in-
stance, methods based on the Newmark family [1–5] have been
successfully employed to solve linear and nonlinear problems, with
physical or geometric properties that may be constant or vary with
time and/or with the deformation of the structure.

Recent developments in time integration methods encompass
several distinct lines of work, including for instance energy-con-
serving algorithms that present better stability behavior in severe
nonlinear problems [6–9]; and also dissipative schemes to address
the issues associated with higher frequencies [10–16]. Since the lit-
erature in these areas is quite vast, it would not be possible to cite
all related works published over the years; therefore the reader is
encouraged to look further into the references provided here,

including also [17–19] where detailed overviews of past historical
developments may be found.

A good illustration of practical applications of time integration
algorithms is provided by the Brazilian experience in the offshore
oil production industry. The assessment of very large deepwater
oil fields in the Campos Basin has been motivating studies on
new alternatives for structural systems to support deepwater plat-
forms, leading to the development of fixed compliant structures
[20], and of moored floating platforms [21], whose behavior is
characterized by large displacements and therefore presents severe
nonlinear dynamic effects. These are typical examples of the so-
called ‘‘inertial” or ‘‘structural dynamic” problems, where the re-
sponse is dominated by the mode shapes with lower frequency val-
ues. In general, the dynamic response of inertial problems is more
efficiently attained with implicit time integration algorithms
[1,5,22]. In this context, the authors have been directing research
efforts to the development of time-domain computational strate-
gies that present improved efficiency for the nonlinear dynamic
analysis of structures, that are inherently time-consuming (see
for instance [23–26]).

However, many systems considered in offshore applications
present not only severe nonlinear effects, but also frequency-
dependent mass, damping and stiffness properties. This character-
istic is associated not only to the intrinsic structural behavior of the
system, but also to the hydrodynamic effects due mainly to the
fluid–structure interaction at the platform hull that must be con-
sidered in the calculation of environmental wave loadings. There-
fore, for such applications the ability of the solution method to
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deal with frequency-dependent properties would be an added pre-
mium: current standard time-domain methods do not possess this
ability.

1.2. Frequency-domain solution procedures

It is well known that, for linear problems, the dynamic equilib-
rium equations can be efficiently solved using domain transforma-
tion procedures (e.g. Laplace, Wavelet and Fourier transforms). The
main advantage of such procedures, comparing with the standard
time-domain approach, is precisely the low computational costs
and the ability to deal with frequency-dependent properties.

For instance, frequency-domain methods based on the Discrete
Fourier Transform (DFT) and Fast Fourier Transform (FFT) [27,28]
are powerful tools for solving structural dynamic problems, partic-
ularly useful for applications to problems with frequency-depen-
dent properties, and/or when spectral responses are desired.

However, such methods present several limitations. For in-
stance, they cannot solve undamped problems; they are not partic-
ularly suited to deal with nonlinear problems, or even with linear
transient problems in which the fundamental period of the Dis-
crete Fourier Transform is not sufficiently extended [27].

1.3. Hybrid solution procedures

Following this line of research, solution procedures that com-
bine time and frequency domain methods have been proposed, try-
ing to combine computational efficiency and the ability of dealing
with frequency-dependent properties and time-dependent nonlin-
ear effects [29–32].

In 1991–92 a breakthrough was reached when Venancio-Filho
and Claret [33,34] presented a matrix formulation for the analysis
of SDOF systems in the frequency domain. This formulation served
as the basis for the development of the ImFT (Implicit Fourier
Transform) method, which was later generalized as a ‘‘time-seg-
mented” or step-by-step procedure to consider MDOF systems,
and also associated to a reduction method to solve dynamic prob-
lems in modal coordinates [35–37].

It can be demonstrated [37] that the ImFT approach corre-
sponds to the standard convolution procedure of the Duhamel
integral [27], where the unit-impulse response function or Green
function can implicitly incorporate the frequency-dependent prop-
erties. In this approach, which is based on the Discrete Fourier
Transform (DFT), the implicit calculation of the Green function is
performed in the frequency domain. Later, this approach was ex-
tended to MDOF systems with nodal coordinates (not requiring
reduction techniques), comprising the so-called ImFGA method
(Implicit Frequency-Domain Green Approach) presented in [38],
based on the calculation of Green function matrices.

Such methods are able to solve dynamic problems implicitly in
the frequency domain, without explicitly calculating response
spectra or transforming the domain of the external loading; the re-
sponse is presented directly in the time domain. This way, fre-
quency-dependent properties could be implicitly treated in the
frequency domain. However, while mild nonlinear effects due to
internal or external time-varying forces can be treated as pseu-
do-forces on the right-hand side of the equations of motion, these
methods are not suited for strongly nonlinear problems.

Other approaches, related to the use of ‘‘step-response matri-
ces” following the line introduced in [39] (see for instance [40]),
can also be viewed as similar to these ‘‘Green function matrices”
approach. Both approaches may be seen as derivations of the
‘‘piecewise exact methods” described in [27]. However there are
significant differences between these methods, mainly related to
the computation procedure and application of such matrices, as
will be commented later in this work.

Extensions and variations of Green function methods have been
recently proposed [41,42], based on explicit computation of the
Green functions in the time-domain by a time integration algo-
rithm. Those methods were shown to be efficient for medium-
sized linear problems, retaining unconditional stability while pre-
senting positive characteristics of explicit methods. However, as
will be commented later in this work, such methods do not deal
with frequency-dependent properties (noting however that they
were not originally concerned with such class of problems).

1.4. Objective of the paper

In this context, the objective of this work is to present the de-
tailed formulation of an efficient hybrid time–frequency domain
solution procedure that is an evolution of previous methods based
on Green functions [43]. This procedure will be referred here as the
HTF-GA method (Hybrid Time–Frequency method with Green
Approach).

The following sections of the paper begin by briefly comment-
ing basic aspects of the formulation of the equations of motion
for dynamic structural problems, including the basic scheme of di-
rect time-domain integration methods and of the hybrid time–fre-
quency domain integration method described here.

Next, the conceptual definition of the Green function is pre-
sented for SDOF problems, and then generalized for MDOF prob-
lems, leading to a recursive step-by-step solution procedure in
the time domain, based on the convolution of the Green function
matrices with the vector of external loading, added to initial condi-
tion terms also affected by the Green function matrices. Section 5
presents improved techniques for the calculation of the convolu-
tion integral, which are included amongst the new developments
incorporated in the formulation described here.

Section 6 presents a detailed description of the procedures em-
ployed to compute the Green functions, which will be implicitly ob-
tained in the frequency domain in terms of its steady-state
harmonic components defined by a Fourier transform. Important
aspects related to causality and convergence of the Fourier series
are addressed.

Section 7 begins by describing a computational implementation
of the HTF-GA method specialized for linear systems, and com-
menting on the computational costs involved. Next, extensions of
the method for systems with nonlinear effects that can be treated
with a pseudo-force technique are discussed. This section con-
cludes with studies on the algorithmical properties of stability
and accuracy.

Finally, results of the application of the method to simple prob-
lems are presented, in order to illustrate the potential of the meth-
od to obtain results with improved accuracy and computational
efficiency.

2. Formulation of the equations of motion

It is well known [1,5] that the spatial discretization via the Fi-
nite Element Method yields a set of second-order ‘‘semi-discrete”
ODE–Ordinary Differential Equations, which in turn can be discret-
ized and solved in time by an appropriate integration algorithm.
For linear problems, this ODE corresponds to the equations of
motion:

M€uðtÞ þ C _uðtÞ þ KuðtÞ ¼ FðtÞ ð1Þ

where €uðtÞ; _uðtÞ and u(t) are vectors containing the unknown nodal
values of, respectively, accelerations, velocities and displacements;
F(t) is the vector of external loads; M and K are the mass and stiff-
ness matrices. Damping effects may be introduced through a Ray-
leigh proportional damping matrix C [1].
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