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a b s t r a c t

A time domain version of linear sampling method (LSM) is developed for elastic wave imaging of media
including scatterers with arbitrary geometries. The LSM is an effective approach to image the geometrical
features of unknown targets from multi-view data collected from measurement of casual waves. This
study emphasizes the exploitation of the LSM using spectral finite element method (SFEM). A compre-
hensive set of numerical simulations on two-dimensional elastodynamic problems is presented to high-
light many efficient features of the proposed fast qualitative LSM identification method such as its ability
to locate an inclusion (e.g., a crack) and estimate its dimensions.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Reconstruction of inclusions (e.g., defects and obstacles) in a
non-accessible region from measures of the backscattered elastic
waves is of much interest in various disciplines. For this purpose,
the location, shape, and size of inclusions are identified for a wide
range of problems in seismology, nondestructive evaluation, medi-
cal diagnosis, geophysics, and submarine detection. These prob-
lems are generally known in the literature as the ‘inverse
scattering’ problems. In many practical fields such as structures,
building components industries, and aerospace, numerical analysis
and computational simulations are intensively replacing full-scale
and prototype laboratory testing. Among various applications,
crack detection at both manufacturing stage and during operating
life of structural components is important for deciding about their
repair or replacement. Practical observations may be generally use-
ful for crack identification; however, for critical and full-scale
structures (e.g., railway tracks, slab deck bridges, and aerospace
structures), visual inspection may be difficult in practice.
Identification of such defects requires over-determined data pro-
vided by a set of measurements. A comprehensive review in condi-
tion monitoring with particular emphasis on structural
engineering applications was presented by Carden and Fanning
[1]. Fan and Qiao [2] also reported a complete review on damage
detection methods for beam- or plate-type structures. Kessler

et al. [3] studied some damage detection procedures for in-situ
damage detection of composite materials. In their numerical work
they found an accurate and easy algorithm to determine time of
flight (TOF) of a Lamb wave pulse between an actuator and sensor.
Su et al. [4] extended Kessler’s approach to a two-dimensional (2D)
domain. In an experimental investigation, they [4] used four piezo-
electric sensors located near to the vertices of a rectangular CF/EP
plate. A nonlinear set of equations was obtained using TOFs and
the solution of nonlinear equations yielded the coordinates of a
point as crack center. The disadvantage of this method is that just
one point has been shown as the crack location, which means the
damage severity is unknown. Time reversal imaging is another
Lamb wave based damage detection algorithm, which uses a con-
cept similar to that of TOFs [5]. The fundamental concept in this
method is that for any waves radiating from a source, which are
subsequently scattered, reflected and refracted by scatterers, there
exists a set of waves that can precisely retrace all the paths and
converge in synchrony at the original source, as if time were going
backwards [6]. Multiple solutions, complexity and low resolution
results are the main shortcomings of this approach. There are
many studies on the interaction of elastic/electromagnetic waves
with unknown scatterers such as cracks. Lu et al. [7] studied the
interaction of Lamb wave modes at varying frequencies with a
through-thickness crack of different lengths in aluminum plates
in terms of numerical and experimental studies. Lee [8] considered
an inverse scattering problem to recover the impedance function
for an arbitrary crack from the far field pattern. Nichols et al. [9]
described a population-based Markov Chain Monte Carlo approach
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for efficient sampling of the damage parameter posterior dis-
tributions. Their approach estimated the state of damage in a
cracked plate structure using simulated, free-decay response data.

Time delay of arrival (TDOA) method, from measurements pro-
vided by an array of sensors, has played an important role in elec-
tronics engineering, robotics, aerospace engineering, defense
technologies and seismology for localizing radiating sources.
TDOA-based localization has been often used for source localiza-
tion and tracking [10]. In the context of elastodynamic, Noureini
and Khaji [11] used the concept of TDOA-based localization to
detect a crack in a plate. The proposed method is based on the scat-
tering of elastic waves due to unknown scatterer.

In recent years, many research attempts led to the development
of effective approaches for damage detection in structural compo-
nents. Notwithstanding a significant progress was gained in
numerical solutions of these problems during the last decades, sev-
eral treatments of inverse scattering problems are genuinely non-
linear. The mathematical efforts made during the last decades to
overcome this additional difficulty have made advancements in
three categories of procedures: non-linear minimization-based
approaches, linearization methods, and qualitative methods.
Non-linear minimization-based approaches [12,13] are based on
the minimization of a misfit cost function through iteratively solv-
ing the underlying forward scattering elastodynamic problem.
Although such techniques can produce very precise reconstruc-
tions, they impose remarkable high computational cost associated
with the quite accurate initial guess. Linearization methods [14,15]
that are based on a weak scattering approximation (e.g., the Born
approximation) are often limited by physical configurations.
These methods depend crucially on the weak-scattering assump-
tion. During the past two decades, the above-mentioned lim-
itations have led to the conceptually distinct class of inverse
scattering solutions, termed as ‘‘qualitative methods’’ for non-
iterative obstacle reconstruction from far/near measurements of
the scattered field [16]. These methods provide an effective alter-
native to the classic optimization approaches. These techniques
can be classified as probe or sampling methods such as linear sam-
pling method (LSM) [17,18], topological sensitivity (TS) [19,20], the
probe method [21], and point source method [22]. In this regard,
the LSM and the FM introduced in the inverse scattering literature
for far-field acoustics are particularly attractive. This is due to the
abilities of mentioned methods to provide accurate reconstruction
of the location and shape of the unknown scatterer from measure-
ments of near- or far-field patterns by simply observing the behav-
ior of the norm of the regularized solution. This norm is bounded
inside the targets and unbounded elsewhere. Moreover, the most
interesting feature of these qualitative methods is that they do
not require a priori information/assumption on the scatterer and/
or the investigation domain. Furthermore, these methods have
relatively low computational cost and can be applied to various
types of defects including not-convex and not-connected ones.
These methods have been applied in different applications, ranging
from seismology, geophysics or submarine detection to non-de-
structive evaluation (NDE) and medical diagnosis. In the context
of elastic waves, interior transmission problem has been investi-
gated by introduction of the LSM for far-field problems [23].

Although the LSM has gained remarkable attention in inverse
scattering theory dealing with wave patterns in the frequency
domain, little attention has been devoted to its application for
near-field elastic wave forms in the time domain. In most cases,
measurements of scattered fields are based on a single frequency
as input data to identify the unknown scatterers. Few extensions
exist to multi-frequency data [24] and time-dependent measure-
ments [25]. Chen et al. [25] developed the time domain version
of the LSM for the scalar wave equation, and found that this version

of the LSM satisfactorily provides reconstructions with a limited
number of receivers/transmitters.

This paper addresses defect identification in elastic solids by
means of the LSM in the context of 2D time domain elastody-
namics. To the authors’ best knowledge, this paper presents the
first comprehensive numerical study of time domain version of lin-
ear sampling method (TDLSM) to identify defect in finite media
such as plates. This paper is organized as follows. The direct scat-
tering problems of interest are reviewed in Section 2, in which
the spectral finite element method (SFEM) is introduced as the for-
ward solution tool. The inverse scattering problem is presented in
Section 3. In Section 4, the LSM formulation is re-defined and
established for the underlying problem. Finally, the results of
numerical examples are presented and discussed in Section 5.

2. Direct scattering problem

Let X � Rd (d = 2 or d = 3) denote a linearly elastic body which
occupies a closed and bounded domain with external surface S.
This domain, which is referred as the reference body, is character-
ized by the Lame’s constants k, l, and mass density q. A bounded
cavity with the closed traction-free boundary oD is embedded in
a homogeneous elastic media X. The boundary S, which is identical
for the reference domain X and the cavitated domain XðDÞ ¼ X n D,
is decomposed into two portions: S = SN [ SD, such that SN \ SD = £

with �uðx; tÞ and �tðx; tÞ being the prescribed displacement and trac-
tion, respectively (see Fig. 1). Accordingly, the displacement field of

a point ~x ¼ ½~x1; ~x2�T arises in X(D) at the time t 2 [0,T] is denoted by

uDð~x; tÞ ¼ uD
1 ð~x; tÞ;uD

2 ð~x; tÞ
� �T . The displacement field uDð~x; tÞ satis-

fies the well-known equation of motion as [26,27]

LuDð~x; tÞ ¼ 0; ð~x 2 XðDÞ; t P 0Þ
tðx; tÞ ¼ 0; ðx 2 @D; t P 0Þ
tðx; tÞ ¼ �tðx; tÞ; ðx 2 SN; t P 0Þ
uDðx; tÞ ¼ �uðx; tÞ; ðx 2 SD; t P 0Þ
uDð~x;0Þ ¼ _uDð~x;0Þ ¼ 0; ð~x 2 XðDÞÞ

ð1Þ

where L denotes the Lamé–Navier partial differential operator
defined by

Luð~x; tÞ ¼ div½C : ruð~x; tÞ� � q€uð~x; tÞ ð2Þ

in which C is the fourth-order elasticity tensor whose components
include all parameters required to characterize the material proper-
ties. For the case of isotropic materials, the constant components
Cijkl may be expressed as

Cijkl ¼ kdijdkl þ lðdikdjl þ dildjkÞ ð3Þ

∂D

( )DS =u u

( )NS =t t

λ, μ, ρΩ(D)

Fig. 1. A sample 2D domain (X) with an embedded cavity.
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