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a b s t r a c t

A new integral approximation of frictional contact problems under large deformations is presented.
Impenetrability, friction and the relevant complementarity conditions are expressed through a non-
smooth equation, considered in the continuous setting. A weak formulation of this non-smooth comple-
mentarity equation is discretized through a standard Galerkin procedure, is linearized consistently and
incorporated in a generalized Newton solution process. The resulting integral handling of contact and
friction complementarity conditions, previously implemented for small deformations only, is extended
in the present paper to large deformations. In total, the proposed method is relatively simple to imple-
ment, while its robustness is illustrated through numerical examples.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Numerical modeling of frictional contact between solids under-
going large deformations is a challenging task, mainly because it
involves complex geometrical and mechanical quantities that
depend on an a priori unknown mapping between the surfaces in
contact. Despite the multitude of very elaborate methods, pro-
posed for solving this problem, there is an ongoing effort for
improving the performance and robustness of currently available
algorithms but also for simplifying the corresponding software
implementations.

Although an exhaustive review of the field would be difficult,
most methods that can represent frictional contact between
deformable bodies under large deformations fall under the follow-
ing categories:

(1) Node-to-segment methods [18], possibly enhanced with
smoothing techniques [23].

(2) Mortar methods [10], possibly in combination with
definition of contact segments [24].

(3) Contact domain methods [12,21,32] and intermediate
surface methods [19].

Node-to-segment and mortar methods normally represent
asymmetric formulations, in the sense that the surfaces in contact

are treated differently by distinguishing between a master (or mor-
tar or target) and a slave (or non-mortar or contactor) surface. On
the contrary, contact domain and intermediate surface methods
are by their nature symmetric, hence they are intrinsically applic-
able to cases like self-contact and simultaneous contact between
more than two solids, where asymmetric formulations usually
require special treatment. Their main drawback is that for an
arbitrary three-dimensional geometry, triangulation of a contact
domain or definition of an intermediate surface can be complex
or not even guaranteed. The here proposed approximation is com-
parable to the mortar methods presented in [10,28], in the sense
that it relies on the available discretization of the slave surface
for performing numerical integration of all relevant contact terms.

Especially in the context of large deformations, the mapping
between the surfaces in contact is an important component in
formulating a numerical approximation of the frictional contact
problem. Node-to-segment methods traditionally map points of
the slave surface to their closest point projection onto the master
surface. Hence, the master surface normals govern the definition
of a gap function and its kinematics, presented in detail in [18].
This classical mapping will in the following be simply referred to
as the projection strategy. A different approach for defining a map-
ping between the slave and master surfaces is to find the closest
intersection with the master surface along the slave surface nor-
mals. This mapping which is more common for mortar methods,
will in the following be referred to as the ray-tracing strategy.

Specifically referring to mortar methods for contact under large
deformations, the formulations presented for instance in [10,16]
employ the classical projection approach, while [25,34,29,11]
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present formulations that rely on the ray-tracing strategy. Other
occurrences of the ray-tracing strategy can be found in [29] as a
contact search method as well as in connection to contact
problems under small deformations, for instance, in the segment-
to-segment approach presented in [34] and in the Nitsche
formulation introduced in [31]. The approach followed in the pre-
sent paper relies on the ray-tracing strategy for deriving a contact
formulation not depending on the curvature of the master surface
with an optimality system which is not discontinuous across mesh
edges or vertices, without requiring any smoothing technique.

Another crucial component in the numerical treatment of con-
tact problems is the method for enforcing contact and friction con-
ditions. Apart from the classical penalty method with its well
known accuracy limitations, alternative approaches introduce
multipliers for dealing with inequality and complementarity con-
straints, for instance, in the context of an augmented Lagrangian
or interior point formulation. The unknown displacement and mul-
tiplier fields can be determined iteratively based on different fixed
point techniques [17], including the very popular Uzawa method
proposed in [26]. Alternatively, the generalized (or semi-smooth)
Newton algorithm can be applied to the full system of equations
including both displacements and multipliers [1,25] or equiva-
lently the solution can be based on a primal–dual active set strat-
egy [15].

One implication related to transitioning from penalty to
Lagrange multiplier based formulations in the context of mortar
methods, concerns the discretization of complementarity condi-
tions. As discussed in detail in [9], penalty formulations in mortar
methods permit an integral enforcement of the contact comple-
mentarity condition by evaluating it at quadrature points. On the
contrary, Lagrange multiplier based mortar methods evaluate con-
tact and friction complementarity conditions with respect to nodal
values of the Lagrange multiplier and weighted gap or slip values
[9,11]. This kind of discrete enforcement of complementarity con-
ditions has two important consequences:

(a) The Lagrange multiplier field can only be approximated
through Lagrange elements, so that finite element nodal
values can be used in the evaluation of complementarity
conditions.

(b) Each finite element node of the Lagrange multiplier can be
associated to either the active or the inactive set of a com-
plementarity condition. Intermediate states cannot be
approximated adequately even if the number of quadrature
points is increased.

The main characteristic of the here proposed method is an inte-
gral approximation of the contact and friction complementarity
conditions in the context of an augmented Lagrangian formulation.
Impenetrability, Coulomb friction stress threshold and the
corresponding complementarity conditions are expressed as a
semi-smooth equation in the continuous space, incorporated in
the weak formulation of the problem and discretized according
to a standard Galerkin procedure. Very few occurrences of such
an integral approach can be found in the computational contact
mechanics literature. To the authors’ knowledge, the fundamental
idea of an integral enforcement of a complementarity equation,
capturing all contact and friction conditions, was originally pro-
posed in [8]. Nevertheless, the actual implementation included in
[8] is a nodal one, while the implementation found in [21] relies
on a quadrature-point-wise definition of the unknown Lagrange
multipliers. In the current work, similar to [17,26], the Lagrange
multiplier field is approximated on a finite element space and con-
tact and friction conditions are enforced in a weak sense. Unlike
Refs. [17,26] however, the present work is not limited to the small
deformations setting.

The proposed method, apart from representing a mathemati-
cally rigorous approximation, has the advantage that it does not
require to prescribe constraints on the discretized Lagrange multi-
plier any longer, like for instance negativity of the contact pressure
and a Coulomb threshold on the friction stress. The full set of con-
tact, friction and complementarity constraints are already included
in the weak formulation. As an interesting consequence, the
formulation is independent of the finite element methods chosen
to approximate the displacements and Lagrange multiplier fields.
This characteristic offers the possibility of combining the proposed
formulation, in the future, with less common approximations than
the classical Lagrange finite elements, like for instance C1 continu-
ous Hermite and enriched finite elements as well as isogeometric
analysis approximations of contact under large deformations, like
[6,27].

The paper is organized in nine sections. Following this introduc-
tion, Section 2 presents the basic problem setting and some nota-
tion conventions. Section 3 provides a comparison between the
classical projection and ray-tracing strategies. Section 4 presents
the weak formulation of the frictionless case along with some
comments about discontinuities in the contexts of the projection
and ray-tracing strategies. Sections 5 and 6 respectively describe
the proposed weak formulation and finite element approximation
for frictional contact, while Section 7 gives some implementation
details. Section 8 presents numerical results and Section 9
concludes the paper.

2. Problem setting and notations

Let X � Rd denote the reference configuration of a deformable
solid in a space of dimension d ¼ 2 or 3, where X may either be
connected or consist of more than one connected components like
for instance shown in Fig. 1. A deformed configuration of the
considered solid can be defined through a transformation u
which maps any point X of the reference configuration to a new
point x:

u : X �! Rd

X # x ¼ uðXÞ;

and is often written in terms of the displacement u relatively to the
reference configuration as:

uðXÞ ¼ X þ uðXÞ:

In the deformed configuration Xt , at time t, different portions of
the boundary @X of X may come into contact and interact with
each other. In order to express this interaction mathematically, it
is convenient to consider part of @X as a slave (or contactor)
surface CS and some other part as master (or target) surface CM .
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Fig. 1. Contact interface quantities in reference and deformed configurations.
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