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a b s t r a c t

A hierarchy of dynamic plate equations based on the three dimensional piezoelectric theory is derived for
a fully anisotropic piezoelectric rectangular plate. Using power series expansions results in sets of
equations that may be truncated to arbitrary order, where each order set is hyperbolic, variationally con-
sistent and asymptotically correct (to all studied orders). Numerical examples for eigenfrequencies and
plots on mode shapes, electric potential and stress distributions curves are presented for orthotropic
plate structures. The results illustrate that the present approach renders benchmark solutions provided
higher order truncations are used, and act as engineering plate equations using low order truncation.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Piezoelectric materials have been used widely in applications
for sensing and actuation purposes in recent years. As piezoelectric
sensors and actuators usually are thin in comparison to relevant
wavelengths, the analyzes of thin piezoelectric layers, such as
beams, plates and shells, have attained considerable research
interest. Many references to work on higher-order piezoelectric
plate theories prior to 2000 are given in the review article by
Wang and Yang [1]. Further references to laminated piezoelectric
plates are presented in [2] while [3] presents a classification and
comparison among higher-order piezoelectric plate models based
on power series expansions. A more recent review article on three
dimensional approaches for piezoelectric plates is presented by
Wu et al. [4].

Plate theories for various material configurations were developed
in the 50’s by Mindlin, among which piezoelectric plates were
addressed in [5]. This work was later generalized by Tiersten and
Mindlin [6] and Mindlin [7] where two-dimensional equations for
a piezoelectric plate were systematically derived using power series
expansions for the mechanical and electric displacements. Bugdayci
and Bogy [8] and Lee et al. [9,10] used trigonometric series expan-
sions for piezoelectric plates, which provides an alternative
approach for analyzing plate vibrations more suitable for high-

frequency modes. More recently developed plate theories using vari-
ous sorts of series expansions of the displacements and the electric
potential for both single and laminated piezoelectric plates can be
found in [11–24]. These expansions are either using a few power
series terms, or written on a general higher order fashion that may
be used to render solutions that converge to the three dimensional
solutions. Exact three dimensional analyses for single and laminated
piezoelectric plates having mixed (simply supported) boundary
conditions are treated in [25–28]. Numerical methods such as finite
element analysis (FEA) has been adopted on both classical and
higher order series expansion theories [29–34].

Recently Mauritsson et al. [35] have derived plate equations for
a homogenous fully anisotropic elastic plate, using a systematic
power series expansion approach, previously adopted for isotropic
rods, beams, shells and plates [36–40]. The same general approach
has been applied to various piezoelectric layer configurations [41–
43]. In the present paper the work in [35] is extended to cover ani-
sotropic piezoelectric plates. The method aims at systematically
develop a hierarchy of equations for general piezoelectric plates
using power series expansions in the thickness coordinate of the
displacement components and the electric potential. Insertion of
these expansions into the three dimensional equations of motion
leads to recursion relations among the expansion functions, which
can be used to eliminate all but some of the lowest order expansion
functions. Hereby all fields can be expressed in a finite number of
expansions functions without performing any truncations. The
power series expansions are subsequently inserted into the three
dimensional boundary conditions at the upper and the lower sur-
faces of the plate. These boundary conditions represent a set of
eight scalar equations of motion, including eight unknown
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expansion functions, which constitute the system of plate equa-
tions. Using variational calculus, the pertinent edge boundary con-
ditions for rectangular plates are obtained in an equally systematic
manner. This hierarchy of piezoelectric plate equations can be
truncated to any order in the thickness where each studied trunca-
tion order is asymptotically correct in line with [35,37,38,44].

The present approach generally differs in several respects from
the cited works using power series expansion on piezoelectric
plates. The main issues concern the derivation of exact recursion
relations where only the lowest order expansion terms need to
be considered. Another object is the procedure when collecting
terms for the truncation process, resulting in variationally consis-
tent equation systems that are asymptotically correct. It should
also be noticed that the present equations are not confined to the
static case. Moreover, the plate configuration may be of arbitrary
anisotropy without any symmetry classes. One advantage with
such a general analysis is that all other cases can be obtained as
special cases. The previously derived plate equations for the fully
anisotropic elastic case [35] can also be obtained as a special case.
As a fully anisotropic, piezoelectric material is described by 21
independent stiffness constants, 18 independent piezoelectric cou-
pling constants and six independent dielectric constants, the expli-
cit expressions for the coefficients in the plate equations become
very complicated. For this reason the plate equations for the most
general case are derived in a very compact form as four matrix
equations, including matrix operators which are recursively
defined using the commercial code Mathematica.2 Hereby it is
straightforward to study all types of anisotropy configurations.

As the material configuration for a fully anisotropic material
results in complicated expressions, it is natural to study simpler
cases of orthotropic plates more in detail. Here the eight plate equa-
tions can be added and subtracted in pairs to obtain two uncoupled
systems of equations, each of them including four equations and
four unknowns. The two uncoupled systems correspond to the
symmetric (in-plane) and antisymmetric (out-of-plane) part of
the motion, respectively. These equations, including the edge
boundary conditions, are explicitly given for the lower truncation
orders. To validate the present plate equations results for dispersion
curves, eigenfrequencies as well as potential, displacement and
stress distribution curves are presented. Both single and laminated
plates are studied and comparisons are made to other approximate
theories as well as the exact three dimensional theory. The results
illustrate both the benchmark property of the higher order trunca-
tions and the efficiency of the lower order engineering equations.

2. Problem formulation

Consider a homogeneous piezoelectric plate of thickness 2h
according to Fig. 1. The material is fully anisotropic with density
q. The basic equations governing the motion in a piezoelectric con-
tinuum are written with abbreviated subscripts [45] as

riJTJ ¼ q@2
t ui; ð2:1Þ

riDi ¼ 0: ð2:2Þ

Here vector subscripts are expressed through lower case letters
i ¼ x; y; z, while abbreviated subscripts are expressed through upper
case letters I ¼ 1;2;3;4;5;6. The mechanical stress, mechanical dis-
placement and electric displacement column matrices are defined
through

½TI� ¼ TxxTyyTzzTyzTxzTxy
� �T

; ½ui� ¼ uxuyuz
� �T

; ½Di� ¼ DxDyDz
� �T

:

ð2:3Þ

The divergence vector ri is defined in the usual way, while the
divergence stress operator riJ is represented in matrix form
through

½riJ� ¼
@x 0 0 0 @z @y

0 @y 0 @z 0 @x

0 0 @z @y @x 0

0
B@

1
CA; ½rIj� ¼ ½riJ �T : ð2:4Þ

Partial derivatives are expressed as @x ¼ @=@x and so on.
For a linear elastic, piezoelectric material the constitutive

equations that express the mechanical stresses and the electric
displacements in terms of the mechanical displacements and the
electric potential, are

TI ¼ cIJrJkuk þ eIjrjU; ð2:5Þ

Di ¼ eiJrJkuk � �ijrjU: ð2:6Þ

Here the quasistatic approximation is applied, i.e. the electric field
is given as the gradient of the electric potential

Ei ¼ �riU: ð2:7Þ

The various material parameters appearing in (2.5) and (2.6) are the
21 independent stiffness constants collected in the symmetric 6� 6
matrix

½cIJ� ¼

c11 c12 c13 c14 c15 c16

c12 c22 c23 c24 c25 c26

c13 c23 c33 c34 c35 c36

c14 c24 c34 c44 c45 c46

c15 c25 c35 c45 c55 c56

c16 c26 c36 c46 c56 c66

0
BBBBBBBB@

1
CCCCCCCCA
; ð2:8Þ

the 6 independent dielectric constants collected in the symmetric
3� 3 matrix

½�ij� ¼
�xx �xy �xz

�xy �yy �yz

�xz �yz �zz

0
B@

1
CA; ð2:9Þ

and the 18 independent piezoelectric coupling constants collected
in the 3� 6 piezoelectric coupling matrix

½eiJ � ¼
ex1 ex2 ex3 ex4 ex5 ex6

ey1 ey2 ey3 ey4 ey5 ey6

ez1 ez2 ez3 ez4 ez5 ez6

0
B@

1
CA; ½eIj� ¼ ½eiJ �T : ð2:10Þ

Insertion of (2.5) and (2.6) into (2.1) and (2.2) gives the governing
equations for the displacements and the electric potential

riJcJKrKlul þriJeJkrkU ¼ q@2
t ui; ð2:11Þ

rieiJrJkuk �ri�ijrjU ¼ 0: ð2:12Þ

3. Power series expansions

To derive plate equations, the displacement components and
the electric potential are expanded in power series in the thickness
coordinate

uiðx; y; z; tÞ ¼
X1
n¼0

znuðnÞi ðx; y; tÞ; ð3:1Þ

Fig. 1. The geometry.
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