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a b s t r a c t

A novel method coupling the scaled boundary finite element method (SBFEM) and the finite element
method (FEM) is developed for linear elastic fracture modelling. A very simple but effective remeshing
procedure based on the FE mesh only is used to accommodate crack propagation. The crack-tip region
is modelled by an SBFE subdomain whose semi-analytical displacement solutions are used to extract
accurate stress intensity factors. The SBFE subdomain is coupled with the surrounding FE mesh through
virtual interfaces so that non-matching nodal discretisations of the shared boundaries can be used and
only one SBFE subdomain is needed at a crack-tip. A few plane problems are modelled to validate the
new method.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

There exist inherently various defects and flaws in engineering
materials and structures from nano-, micro- to meso-scales. Under
certain external loadings, these small-scale defects and flaws can
develop into macro-scale cracks, whose initiation and propagation
may severely affect the structural integrity and safety. Therefore,
understanding crack propagation behaviour by laboratory experi-
ments and numerical simulations has attracted tremendous atten-
tion in last five decades. This paper is focused on numerical
modelling of crack propagation problems.

The difficulties and challenges of numerical modelling of crack
propagation are reflected by numerous numerical methods devel-
oped so far, e.g., the finite element method (FEM), the boundary ele-
ment method (BEM), the meshless or meshfree method, and more
recently, the extended FEM (XFEM). The FEM is the most popular
numerical method in simulating crack propagation because of the
high generality and flexibility of the method in modelling struc-
tures with complex geometries, various boundaries and loading
conditions [1–3]. However, when the FEM is used to simulate crack
propagation, very fine crack-tip meshes or special elements are
needed to calculate accurate stress intensity factors (SIFs) for crack

propagation. This makes remeshing difficult. The BEM is another
popular method that has been widely used to model fracture prob-
lems [4–7]. The modelled spatial dimensions are reduced by one
because only boundaries are discretised, which makes remeshing
much simpler. However, the BEM is applicable only to problems
where Green’s functions can be derived, which restricts its wide
applicability [8]. The meshless or meshfree method [9] models a
domain with boundaries and scattered nodes only. Nodal moving
rather than remeshing around the crack-tip is carried out as the
crack propagates. This method can calculate accurate SIFs but the
computational cost is generally higher than the FEM [10]. In the
XFEM, the displacement discontinuity across the crack faces is
taken into account by adding discontinuous functions to the shape
functions to avoid remeshing [11–14]. Extra terms of enrichment
functions are needed to capture different crack-tip singularities.
This makes the formulation of shape functions complicated and
the numerical integration becomes involving and less accurate
[14,15]. Many special crack-tip elements with built-in singularities,
e.g. quarter point elements [16], hybrid Trefftz elements [17],
hybrid crack elements (HCE) [18–20] have also been developed in
the FEM, BEM and XFEM.

A more recent alternative is the scaled boundary finite element
method (SBFEM). It is a semi-analytical method developed by Song
and Wolf [21,22] in the late 1990s. This method not only combines
the advantages of FEM and BEM but also exhibits additional advan-
tages, e.g., it discretises boundaries only and the spatial dimension
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is reduced by one like the BEM, but requires no fundamental solu-
tions; it avoids singular integrals and extends the BEM’s applicabil-
ity considerably [23–25]. It is very efficient in modelling problems
with discontinuities and singularities because of its semi-analytical
nature. Ooi and Yang [26,27] recently developed a hybrid FE–SBFE
method capable of automatically modelling multiple crack prop-
agation. The hybrid method retains the advantages of SBFEM such
as its high accuracy in calculating SIFs and that of FEM such as its
flexibility in modelling complicated geometries. However, several
crack-tip SBFE subdomains are needed in the hybrid method to
maintain the matching nodal discretisation with surrounding finite
elements. New methods coupling BEM and SBFEM [28,29] and
XFEM [30] have also been developed in computational fracture
mechanics.

In the domain decomposition technique, a domain is divided by
virtual interfaces into independent parts which can be meshed
separately, and non-matching nodal discretisations can be used
on the two sides of the virtual interfaces [31–34]. The displace-
ment compatibility across the virtual interfaces can be ensured
by using sufficiently high stiffness on the interfaces [35–37]. In
fracture problems, a domain can be conveniently divided into
two parts, the local crack-tip part modelled with fine meshes to
calculate accurate SIFs, and the rest global part without cracks
modelled with coarse meshes. Using the non-matching technique,
only the local crack-tip part needs to be remeshed/refined as the
crack propagates (e.g., [37–39]), whereas the global part often
needs to be remeshed as well when the matching meshes are used
[3,40].

This study proposes a non-matching SBFEM–FEM coupled
method to simulate quasi-static crack propagation problems based
on the linear elastic fracture mechanics (LEFM). In this method, a

very simple remeshing procedure based on FE meshes only is used
with accurate SIFs calculated by crack-tip SBFE subdomains. The
main difference between the present method and the previous
hybrid FE–SBFE method [26] is that in the present method, the
SBFE subdomain boundary is coupled with the surrounding FE
mesh boundary through virtual interfaces so that the nodal dis-
cretisations of the two boundaries can be different and only one
SBFE subdomain is needed for one crack, whereas in the previous
method, several subdomains are needed to maintain the matching
nodal discretisation. Compared with the non-matching method
based on FEM only, this method offers higher accuracy in calculat-
ing SIFs with much fewer degrees of freedom (DOF) due to the
semi-analytical nature of SBFEM.

2. The non-matching SBFEM–FEM coupled method

2.1. The scaled boundary finite element method

In the SBFEM, a domain is divided into subdomains whose
shapes and areas can be very different from one to another.
Fig. 1 illustrates a two-dimensional (2D) subdomain, which is
represented by scaling a defining curve S relative to a scaling cen-
tre. A normalised radial coordinate n is introduced, varying from
zero at the scaling centre to unit on S. A circumferential coordinate
s is defined around the defining curve S. Thus, n and s form a local
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Fig. 1. A subdomain in SBFEM.
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Fig. 2. Coupling SBFE and FE meshes.
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Fig. 3. FEM-based remeshing.
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