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a b s t r a c t

This paper proposes a stochastic response analysis method for the scaled boundary finite element
method (SBFEM), through which the statistical characteristics of the structural responses subject to ran-
dom uncertainty can be efficiently calculated. In the proposed method, an approximate approach is given
to solve the first four statistical moments of the random responses of SBFEM. The probability density
functions of the structural responses are calculated using the maximum entropy principle constrained
by the calculated moments. The semi-analytical gradients of the responses with respect to the random
variables are solved by developing an improved sensitivity analysis method of SBFEM. The proposed
method is then applied to the structural reliability analysis and the probabilistic fracture mechanics
analysis. Four numerical examples are investigated to demonstrate the validity of the proposed method.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The scaled boundary finite-element method (SBFEM) is a semi-
analytical method originally proposed by Song and Wolf [1,2]. The
prominent feature of the SBFEM is that the whole problem domain
is generated by scaling the boundary to a single point called the
scaling center. Generally, it only requires meshing on the boundary
of the analyzed domain reducing the spatial dimension of the
problem by one in comparison to the finite element method
(FEM) and does not need a fundamental solution in comparison
to the boundary element method (BEM). For the analytical repre-
sentation of the stress singularities in SBFEM, it has emerged as a
promising technique for fracture analysis with stress intensity
factors (SIFs) calculated accurately and efficiently.

The SBFEM received wide attention and have achieved great
successes in the last two decades. Wolf [3] extended the SBFEM
to calculate the response throughout the unbounded soil. Ekevid
and Wiberg [4] analyzed the wave propagation related to three-
dimensional high-speed train for unbounded domains based on
the combination of conventional FEM and SBFEM. Tao et al. [5]
solved the boundary-value problem composed of short-crested
waves diffracted by a vertical circular cylinder using SBFEM, which
was extended to deal with the interaction of water waves and por-
ous offshore structure by Song and Tao [6]. Liu et al. [7,8] extended

the SBFEM to solve short-crested wave interaction with a concen-
tric structure with double-layer perforated cylinders. He et al. [9]
developed an element-free Galerkin scaled boundary method for
solving steady-state heat transfer problems. Song and Wolf [10]
derived a semi-analytical solution of the singular stress occurring
at cracks in anisotropic multi-materials by SBFEM. Song et al.
[11] proposed a definition and evaluation procedure of generalized
SIFs using SBFEM. Yang [12] and Ooi and Yang [13,14] used the
SBFEM to analyze crack propagation problems. Li et al. [15] and
Man et al. [16] presented a technique for structural analysis of
piezoelectric materials based on SBFEM. Vu and Deeks [17] used
fundamental solutions in the SBFEM to solve problems with con-
centrated loads. Gravenkamp et al. [18] presented an approach to
compute dispersion curves of elastic waveguides based on
SBFEM. Ooi et al. [19] developed a novel polygon-based SBFEM
formulation, which was then applied to the analysis of non-linear
elastic crack propagation [20], structural analysis of elasto-plastic
materials [21] and fracture problem of functionally graded materi-
als [22].

In the above-mentioned works, generally all the involved
parameters such as material properties, loads and geometrical
characteristics, were given specific values. Thus the whole struc-
tural response analysis was deterministic, namely deterministic
input parameters cause the deterministic displacement, stress
and strain responses. However, due to the effects of manufacturing
and measuring errors as well as the unpredicted circumstance
factors, many important parameters related to the material
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properties, loads and geometrical sizes of the structure often exist
a certain degree of uncertainty. If we use the probability approach
to deal with this uncertainty, an important stochastic response
analysis problem then will be encountered. Through the stochastic
response analysis, we can obtain the probabilistic distributions of
the responses of the structure caused by the input parameters’
uncertainty, which are then very important for the subsequent
structural reliability analysis and safety design. Actually, research
on the stochastic uncertain analysis for SBFEM has been conducted
in few studies [23,24]. However, in these works which mainly
focus on reliability analysis, the SBFEM was treated as a black-
box solver, and the stochastic characteristics of the structural
responses were achieved by calling a great number of evaluations
of SBFEM, which generally leading to a relatively low com-
putational efficiency. To develop an efficient stochastic response
analysis algorithm then becomes very important for SBFEM, which
will make the SBFEM playing a more important role in some
important fields such as reliability analysis and probabilistic frac-
ture mechanics.

In this paper, we aim to propose an efficient stochastic response
analysis algorithm for the SBFEM, through which the probability
distributions of the responses caused by the uncertain inputs can
be efficiently obtained. The remainder of this paper is organized
as follows. Section 2 summarizes the basic theory of SBFEM;
Section 3 presents the formulation of the SBFEM-based stochastic
response analysis method; Sections 4 and 5 give the applications
of the method to structural reliability analysis and probabilistic
fracture mechanics; Section 6 gives the numerical analysis, and
Section 7 summarizes the conclusion of the paper.

2. Summary of the SBFEM

The fundamentals of the SBFEM are given in many publications
(e.g., [1,2,25]) and the key equations are given below for the conve-
nience of discussion. As depicted in Fig. 1, the SBFEM introduces a
coordinate system (n, g) by scaling the domain boundary relative
to a scaling center O: the radial coordinate n points to the boundary
from the scaling center where its value is zero while its value is 1
on the boundary, and the circumferential coordinate g is along the
boundary direction. The displacement field in the domain V is
approximated analytically in the radial direction and in the FEM
sense in the circumferential direction. The scaling center is chosen
such that the whole boundary is visible from it. This can always be
realized by dividing the domain into sub-domains. Suppose that
the origin of the Cartesian coordinate system is selected at the scal-
ing center. The scaled boundary and Cartesian coordinate systems
are related by the scaling equations:

x ¼ nxgðgÞ ¼ nNðgÞfxg; y ¼ nygðgÞ ¼ nNðgÞfyg ð1Þ

where (xg(g), yg(g)) describes the boundary coordinates using con-
tinuous piecewise smooth functions. ({x}, {y}) describes the bound-
ary nodes’ coordinates and N(g) is the shape function. The
displacements are expressed as the following form:

uðn;gÞ ¼ NuðgÞuðnÞ ð2Þ

where u(n) are nodal displacement functions along the radial lines,
Nu(g) is the shape function matrix at the circumferential direction.
The whole domain displacements can be obtained by interpolating
u(n) along the circumferential lines.

The scaled boundary finite element equations can be derived
according to the virtual work principle in elastic statics [25]:
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where p can be identified as the equivalent nodal forces. The coeffi-
cient matrices E0, E1 and E2 are integrated along the boundary S:
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where B1(g) and B2(g) describe the strain–displacement relation-
ship with:
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where L1 and L2 are two constant matrices, which can be obtained
by mapping the linear operator to the SBFEM coordinate system. |J|
is the determinant of the Jacobian matrix on the boundary:

jJj ¼ xgðgÞ
@ygðgÞ
@g

� ygðgÞ
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ð10Þ

The solutions of the radial displacement have the following
form:

uðnÞ ¼
Xn

i¼1

cin
�ki /i ð11Þ

where ci are the integration constant, the exponent ki and
corresponding vector /i can be interpreted as independent defor-
mation mode, and n is the total degrees of freedom of the nodes.
The displacements for each mode take the form uðnÞ ¼ n�k/.
Substituting this solution into the scaled boundary finite element
equations and assembling together the two sets of equations leads
to a linear eigenproblem:
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where Z is a 2n � 2n Hamilton matrix. There are 2n modes in the
solution of this standard eigenproblem, and for a bounded domain
only the modes with non-positive real components of eigenvalues
ðk ¼ ½k1; k2; . . . ; kn�Þ lead to finite displacements at the scaling center.
Therefore, the eigenvalues and eigenvectors (Eq. (12)) are parti-
tioned as follows:
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Fig. 1. Bounded domain in scaled boundary coordinates.
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