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a b s t r a c t

A novel concurrent multiscale method for the crack propagation analysis in heterogeneous materials is
proposed, based on a non-overlapping domain decomposition technique coupled with an adaptive
zoom-in strategy. Both fiber/matrix interfacial debonding and matrix cracking are accounted for; the
latter one is modeled by using an innovative shape optimization method coupling a moving mesh
technique and a gradient-free optimization solver. Numerical applications are carried out with reference
to the failure analysis of a single notched fiber-reinforced composite beam subjected to both mode-I and
mixed-mode crack propagation conditions. The validity of the proposed method is assessed through
original comparison models.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Composite materials may be affected by different kinds of dam-
age mechanisms, which are usually triggered by pre-existing
manufacturing-induced defects. Fiber-reinforced composites, with
reference to laminate configurations, experience both intralaminar
mechanisms (such as matrix cracking, fiber splitting, and fiber/
matrix interfacial debonding) and interlaminar mechanisms (such
as delamination). Several studies have shown that delamination
phenomena frequently start at free edges and/or at discontinuities
arising from matrix cracking (see, for instance, [1]), by also involv-
ing bridging and dynamic effects (see [2,3], respectively), i.e. a
strong interaction between different mechanisms may rise at mul-
tiple length scales. Indeed, such damage mechanisms, which ini-
tially take place at the microscopic level, strongly influence the
overall structural behavior of composite materials, leading to a
highly nonlinear structural response associated with a progressive
loss in strength and stiffness (see, e.g., [4]), by also involving micro-
scopic instabilities (see [5]), up to catastrophic failure events.

Therefore, a proper analysis of damage mechanisms in compos-
ites would require a complete description of their microstructural
evolution, resulting in fully microscopic problems, whose numeri-
cal solution needs a huge computational effort; as a consequence,

simplified models are preferred when performing failure analyses
of composite materials.

Damage mechanics has been recognized as a powerful tool for
studying brittle or quasi-brittle fracture in composite materials
(see, e.g., the reviews by [6,7]). Damage models are established
by performing the following steps: (i) a properly defined (scalar
or tensorial) damage variable is introduced to represent the dam-
age state at any material point of the composite material; (ii) a
damage evolution equation is formulated in a thermodynamically
consistent manner; (iii) a constitutive equation, describing the
mechanical behavior of the damaged material, is obtained; and
(iv) the macroscopic boundary value problem is solved by using
the above-mentioned equations. However, differently from ductile
damage, microcracking-induced damage has some distinct fea-
tures, such as high anisotropy, dependence on the loading history
and loading paths, non-associated damage rule due to the frictional
sliding of microcracks under compression (see, for instance, [8]).
Due to the difficulty to phenomenologically incorporate such
effects into a unified macroscopic constitutive equation, micro-
scopically-informed modeling of damage has attracted a special
attention for quasi-brittle materials.

Within the theoretical framework of micromechanics, both
analytical and numerical homogenization techniques have been
extensively adopted to predict the overall mechanical response of
composite materials on the basis of the properties of the various
individual microconstituents, by establishing relationships between
the microscopic stress and strain fields and the corresponding
variables at the macroscopic level (see, for instance, [9–11]).
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However, classical homogenization methods, also referred to as
first-order schemes, are effective when the microscopic stress and
strain fields are rapidly varying with respect to their macroscopic
counterparts, namely when the microscale and the macroscale
are well separated. Such hypothesis ceases to hold when handling
strain localization phenomena in locally periodic structures, which
experience the loss of the initial macroscopic uniformity. Softening
cannot be properly accounted for, because of the mesh dependence
arising from the ill-posedness of the macroscopic boundary value
problem, as shown in [12].

In order to overcome such drawbacks, more sophisticated
homogenization approaches have been proposed in the literature,
such as the higher-order homogenization and the continuous-dis-
continuous homogenization schemes. The first type of methods has
been adopted in [13] for transferring higher-order kinematics from
the microscale to the macroscale, by incorporating a length scale,
corresponding to the size of the so-called representative volume
element (RVE), into the macroscopic model. The latter type is
based on the incorporation of a proper localization band at the
macroscopic scale (see, for instance, the approach adopted in
[14]). Both classes of approaches may be used within the more
general framework of multiscale methods. According to [15], such
methods can be grouped in three classes depending on the nature
of the coupling between the microscale and the macroscale:
hierarchical, semiconcurrent and concurrent methods.

In hierarchical methods, a ‘‘one-way’’ bottom-up coupling is
established between the microscopic and macroscopic problems,
i.e. during the ‘‘micro-to-macro’’ transition step the information
is passed from lower to higher scales. In semiconcurrent methods,
also referred to as computational homogenization approaches, a
microscopic boundary value problem is associated with each
integration point of the discretized microstructure, in order to
obtain the local governing equation at the macroscale. This class
of methods allows one to compute the fine-scale response required
by the coarse-scale model for a specific input and passes the
information to the coarser scale during the analysis; thus, a phe-
nomenological constitutive model at the macroscale is not needed.
On the other hand, concurrent multiscale methods abandon the
concept of scale transition in favor of the concept of scale embed-
ding, according to which models at different resolutions are
defined in adjacent regions of the same domain. Such methods fall
within the class of domain decomposition methods (DDMs), in
which a strong two-way coupling between different scales is
established.

In this work an innovative multiscale method capable to
perform crack propagation analysis in fiber-reinforced composite
materials is proposed, taking advantage of a non-overlapping
domain decomposition method, combined with an adaptive tech-
nique able to continuously update the fine-resolution subdomain
around a macroscopic crack evolving along non prescribed paths.
Although the proposed method can be applied to general failure
modes, transverse cracking mechanisms are considered in the pre-
sent work, since such a mechanism, which includes both matrix
cracking and fiber/matrix interfacial debonding is one of most
observed in continuous fiber-reinforced laminates; this allows to
perform numerical simulations in a 2D setting. The competition
between fiber/matrix interface debonding and kinking phenomena
from and towards the matrix is accounted for, as well the continu-
ous matrix cracking, by incorporating in the model the ad hoc
fracture criteria. Matrix cracking is simulated by using a novel
shape optimization method based on the coupling between a
moving mesh technique and a gradient-free optimization solver;
such an ingredient makes the present approach different from
existing concurrent multiscale methods, which usually adopt
damage models or cohesive zone models to simulate damage prop-
agation (see, for instance, [16]).

Numerical computations are performed for a single notched
composite beam subjected to different loading conditions
involving both mode-I and mixed-mode crack propagation.
Comparisons with solutions obtained by direct numerical sim-
ulations and simplified homogenized solutions are presented, in
order to assess the validity of the proposed multiscale approach.

The paper is based on preliminary results obtained by the
authors in [17] and introduces two main aspects of novelty. The
first corresponds to the introduction of a refined approach for
managing crack kinking within the material interface; this aspect
has not been discussed in our previous work, which was based
on a simplified approach, as will be discussed in Section 2.2.2.
The second is the presentation of innovative numerical applica-
tions and original approximate comparison models which allows
a more general validation of the proposed multiscale method.
These innovative numerical applications involve fiber-reinforced
composite beams subjected to both mode I and mixed-mode load-
ing conditions. In the context of approximate comparison models,
an original purely homogenized model of the analyzed specimens
have been developed capable to obtain a reasonable prediction of
the peak load, by means of appropriate assumptions about the
macroscopic fracture toughness.

2. Theoretical background

This section aims to present the main concepts used to develop
the proposed numerical model, which will be described in
Section 3. In the first part, a general framework of concurrent mul-
tiscale modeling is presented, by extending the multiscale version
of the non-overlapping domain decomposition schemes (see, for
instance, [18]) to the case of a damaging composite material; in
the second part, attention is focused towards fracture modeling
in composite materials, with special reference to the competition
between different damage mechanisms involving both matrix
and fiber/matrix interfaces.

2.1. A concurrent multiscale framework for damaging composite
materials

Let us consider the elasticity problem in a quasistatic setting of
a cracked heterogeneous structure, occupying the open set X � R3,
as shown in Fig. 1a; its boundary @X is supposed to be Lipschitz
continuous, such that @tX [ @uX ¼ @X and @tX \ @uX ¼£, where
@tX and @uX represent the portion subjected to Neumann and
Dirichlet boundary conditions, respectively; moreover, the mea-
sure of @uX is supposed to be greater than zero to avoid rigid-body
motions. Such a heterogeneous body is made by a spatial array of
periodically distributed unit cells, whose microstructure is the
same as for a reference cell, denoted as repeating unit cell (or
RUC in short). The given crack set K is represented by a set of physi-
cal surfaces, denoted by CðiÞc (i = 1, . . . , nÞ, where displacement
jumps are admitted. For microconstituents made of linearly
hyperelastic material, under the assumptions of small deformation
and absence of contact phenomena between the crack faces, such a
problem can be mathematically stated via a classical elliptic PDE
system with associated boundary conditions. The related weak
form reads as:Z

X
½CðXÞru� � rv dX ¼

Z
X

�f � v dXþ
Z
@tX

�t � v dS 8v 2 VðXÞ;

ð1Þ

with u 2 H1ðXÞ;u ¼ �u on @uX, u being is the (actual) unknown dis-
placement field, �u the prescribed displacement on @uX, and H1ðXÞ
denoting the usual Hilbert space of order 1 on X; moreover
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