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a b s t r a c t

Estimating failure probabilities of multiple stochastic responses using a single run of Subset Simulation
remains a challenging task in structural reliability analysis. To address this issue, this study develops a
generalized Subset Simulation (GSS) approach, in which a unified intermediate event is defined to drive
the simulation procedure progressively approaching multiple failure regions simultaneously. It bypasses
the sorting difficulty arising from the multiple stochastic responses. The failure probabilities of multiple
stochastic responses are obtained simultaneously by a single run of GSS. Finally, four representative
examples are used to demonstrate the efficiency, accuracy and robustness of the proposed GSS approach.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Estimating failure probability PF of a failure mode concerned is
one of the most challenging and fundamental problem in structural
reliability analysis. For a given failure mode, its corresponding PF

can be expressed as the evaluation of the following multi-
dimensional integral [1,2]

PF ¼ PðX 2 FÞ ¼
Z

IFðXÞqðXÞdX ð1Þ

where X = [x1, . . . , xn] e X � Rn represents an n-dimensional ran-
dom vector, in which x1, . . . , xn are n random parameters of the
structural system concerned; q(X) is the joint probability density
function (PDF) of X; and F = {g(X) < 0} is the target failure region
in the parameter space. Note that g(X) is the limit state function
(LSF) that divides the parameter space X into a safety region with
gðXÞP 0 and a failure region with g(X) < 0. Without much loss of
generality, it is assumed that the components (i.e., x1, . . . , xn) of X
are independent so that qðXÞ ¼

Qn
i¼1qiðxiÞ, where qi, i = 1, 2, . . . , n,

are the marginal PDFs for xi. Usually, the dependent samples can
be generated by transformation of independent ones in applications
[3–5].

In general, PF cannot be efficiently evaluated by direct numeri-
cal integration because multi-dimensional integral is involved (see

Eq. (1)) and the failure region can be very complicated. Many
numerical techniques have been developed for estimating PF. They
can be roughly classified into two categories by their features. In
the first category, the LSF is approximated by the first order or sec-
ond order Taylor series expansion around a reference point (i.e.,
the so-called most probable point or design point) [1,2,6–9]. Then,
the reliability index is calculated through the simple approximated
LSF and the probabilistic information of the input random vector.
The concept and calculation procedure of these methods are sim-
ple and they also were observed efficiently in many previous stud-
ies [1,2,6–9]. However, this category of methods cannot be applied
to high dimensional problems (n > 20) [10] or the problems with
highly nonlinear LSFs. They may also trigger convergence issues
when the required gradient and/or Hessian matrix of the LSF are
calculated by finite difference methods.

The second category of approaches for estimating the failure
probability are collectively referred to as simulation based meth-
ods, including the crude Monte Carlo Simulation (MCS) [11,12],
important sampling (IS) methods [12,13], directional simulation
(DS) [14–16], line sampling (LS) method [17,18], and Subset
Simulation (SS) [19]. The crude MCS [11,12] is one of the most
well-known simulation methods for reliability analysis because it
is independent of the complexity and dimension of the problem.
However, the crude MCS suffers from its inefficiency at small
probability levels due to the demand of a huge amount of samples
[13–22]. To address this drawback, many variance reduction tech-
niques have been proposed. Based on a prudent choice of the
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importance sampling density (ISD), IS methods shift the underlying
distributions toward the target failure region so that more samples
are generated in the failure region [12,13]. Many schemes employ
design points to construct the ISD, which serve as the new sam-
pling center. This strategy is usually appropriate when the dimen-
sion n of the problem is relatively low and the failure region is
relatively simple [20,22,23], while its efficiency decreases as the
number of dimensions and/or the complexity of the problem
increase [21,24]. DS [14–16] generates samples in an independent
standard normal space with polar coordinates. It reduces the num-
ber of dimensions of the problem from n to n � 1 by interpolation
or solving the nonlinear equation. DS presents much better effi-
cient and accurate than the crude MCS implemented in Cartesian
coordinates when the LSF is close to a spherical surface, while no
advantage for problems with linear LSFs. LS method [17,18] aims
to efficiently resolve the high dimensional difficulty in reliability
analysis through interpolation in the important direction and ran-
dom sampling of the rest n � 1 dimensions. It works efficiently
when the important direction is close to the steepest descent direc-
tion (i.e., optimal important direction) of the LSF. It can be seen
that LS requires prior information on the important direction in
the standard normal space. However, such information might not
be available in many cases. SS, which was first pioneered by Au
and Beck [19], is efficient for estimating small failure probabilities
and robust to dimensions. It converts a small failure probability
into a product of relatively large conditional probabilities by intro-
ducing intermediate events. SS has been recognized as one of the
most successful reliability methods in the past decade [25]. It has
been widely applied to estimate the small failure probabilities of
general dynamical systems encountered in engineering reliability
analysis [19,26]. Applications of SS for some reliability benchmark
problems [25,27] and several variants of SS are also available in
previous studies, e.g., Refs. [28–33].

Most of reliability methods described above are developed for
estimating the failure probability of a single stochastic response
(i.e., a single LSF), but relatively few efforts were devoted to the
capacity of estimating, simultaneously, the failure probabilities of
multiple stochastic responses (i.e., multiple LSFs), which usually
arises in reliability-based design when multi failure criteria are
considered. The crude MCS is able to estimate the failure probabil-
ities of multiple stochastic responses simultaneously, but it suffers
from lack of efficiency at small failure probability levels. Compared
with the crude MCS, SS improves significantly the efficiency and
resolution of estimating the failure probability at small probability
levels, but it remains a difficulty to estimate failure probabilities of
multiple stochastic responses simultaneously. A parallel Subset
Simulation (PSS) approach has been proposed for multiple stochas-
tic responses [33]. In the PSS, a principle variable that is correlated
with all the LSFs of interest is defined to drive the simulation to
gradually approach the multiple failure regions. However, determi-
nation of a proper principle variable in the PSS is a not trivial task.
In addition, it is difficult to theoretically verify the correlation
between the principle variable and all the LSFs concerned in the
subsequent SS levels after the level of MCS although the empirical
verification on the correlation is possible using numerical exam-
ples [33].

The objective of this study is to develop a generalized Subset
Simulation (GSS) approach to simultaneously estimate the failure
probabilities of multiple stochastic responses. The proposed GSS
inherits the excellent properties of the original SS, e.g., robustness
to dimension, high efficiency at small probability levels, and inde-
pendence to model complexity, etc., and is applicable for estimat-
ing failure probabilities of multiple stochastic responses. In the GSS
approach, a unified intermediate event is constructed to resolve
the sorting difficulty in the original SS. The determination of inter-
mediate events for each stochastic response in GSS is identical with

that in the original SS, while the unified intermediate events drive
the simulation to, progressively and simultaneously, approach the
multiple failure regions defined by multiple stochastic responses in
a single run of simulation.

The paper is organized as follows. Section 2 presents the funda-
mental principle and implementation procedure of the original SS
for a single stochastic response, followed by the development of
the proposed GSS for multiple stochastic responses. Then, the pro-
posed GSS approach is illustrated through two numerical examples
and two high dimensional reliability benchmark problems. Results
obtained from the proposed GSS are compared with those obtained
from the original SS and the crude MCS. Finally, conclusions are
given in the last section.

2. Subset Simulation for a single stochastic response

The proposed GSS is developed from the original SS. To facilitate
the understanding of the proposed GSS, let us first briefly review its
fundamental principle and implementation procedure of the
original SS.

2.1. SS principle

The basic idea of SS is to convert a small failure probability into
a product of a sequence of relatively large conditional probabilities
by introducing the intermediate events adaptively [19]. Let F
denote the target failure event defined as F ¼ fgðXÞ 6 bg, where
b is the desired response threshold for a performance index in
a structure of interest. The failure occurs when g(X) 6 b. Let
F1 � F2 � � � � � Fm = F denote a sequence of nested intermediate
events. Then, the target failure probability can be expressed as [19]

PF ¼ PðFÞ ¼ PðFmÞ ¼ PðFm Fm�1j ÞPðFm�1Þ ¼ � � �

¼ PðF1Þ
Ym
i¼2

PðFi Fi�1j Þ ð2Þ

The intermediate events have similar expressions to the target
failure event F, i.e., Fi ¼ fgðXÞ 6 bi; i ¼ 1; . . . ;mg (b = bm <
� � � < b2 < b1), where m is the total number of intermediate events.
They can be determined in an adaptive way if a constant p0 is given
to the conditional probability [19]. Note that generating condi-
tional samples is pivotal to implementing the original SS. A
modified Metropolis–Hasting algorithm is developed and applied
to generate the conditional samples in SS [19]. Details of the algo-
rithm of the original SS are referred to Ref. [19].

2.2. Implementation procedure

Without loss of generality, N samples and a constant value p0

are employed in each simulation level of SS.

(1) SS starts with the crude MCS to generate N samples Xi

(i = 1, . . . , N) in the parameter space X. Then, the first
response threshold b1 is determined by setting the first con-
ditional probability P(F1) be equal to p0 from the point view
of statistical inference. This is simply achieved by selecting
the first Np0 samples from the ascending sequence of
response values {g(Xi)}. If Np0 is not an integer, one can
use a new constant [Np0]/N to replace p0 to determine b1.
For simplification, the symbol ‘‘p0’’ is still used to denote
the conditional probability in the remaining part of the
paper. The selected Np0 samples are used as the seed sam-
ples for generating conditional samples in the next simula-
tion level. It is obvious that the first intermediate event F1

is conditional on the whole parameter space X. Therefore,
these Np0 samples belong to the first intermediate event
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