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This paper extends classical limit analysis to structures for which some supports are subjected to
“nonstandard” unilateral frictional contact with the ground. A typical and commonly adopted model is
nonassociative Coulomb friction. For such cases, the use of the classical bound theorems is not possible.
Moreover, simply solving the governing equations as a mixed complementarity problem (MCP) does not
guarantee that the best bound has been calculated. We have therefore developed an approach that
attempts to compute, in a single step, the critical (least) upper bound solution by formulating and solving
an instance of the challenging class of optimization problems, known as a mathematical program with
equilibrium constraints (MPEC). Two examples are provided to illustrate application of the proposed
scheme, as well as to highlight some key features of such structures.
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1. Introduction

As is well-known, classical limit analysis is a “direct” or “simpli-
fied” approach that avoids a computationally expensive time-step-
ping analysis. Its distinctive feature is the determination, in a
single step, of the load factor (or more precisely, its upper and/or
lower bounds) at which a critical event (namely plastic collapse)
occurs. The upper and lower bound theorems underpinning the
classical approach are, however, strictly only applicable to struc-
tures that satisfy some rather restrictive requirements, the main
ones being conditions of perfect plasticity (e.g. no hardening or
softening, normality and convexity of yield surface). Extending
such theorems to include some or all “nonstandard” properties,
as they are often referred to, is of theoretical and practical value.

The limit analysis of discrete structures continues to be of re-
search interest, see e.g. [1-3]. This has been motivated by three
main objectives: (a) application to specific, possibly “nonstandard”
engineering situations, (b) overcoming the volumetric locking
behavior encountered in plane strain and 3D problems, and (c)
development of efficient computational strategies for solving prac-
tically motivated problems.

Due to the computational challenges it poses, and at the same
time its practical usefulness, the limit analysis of structures involv-
ing “nonstandard” unilateral frictional contact is of particular
interest. For the commonly assumed Coulomb model the frictional
conditions are nonassociative, since sliding is not accompanied by
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dilation (separation of contact interfaces). Normality with respect
to the friction cone is thus no longer applicable, and the classical
dual pair of bound theorems is invalid. This problem has been tack-
led with partial success for frames [4] via the well-known bipoten-
tial method [5,6]. We have recently revisited this problem [7],
where the best upper bound to the collapse load of such a frame,
for which plasticity is caused by bending only, has been success-
fully computed.

The present paper is an extension to that work. Our aim is still
to compute in a single step the best upper bound to the collapse
load of a rigid perfectly-plastic structure for which some or all of
its supports are in unilateral frictional contact with ground. Mono-
tonically applied loads are assumed, as well as a small deformation
regime.

More specifically, the two key extensions to our previous work
[7] are as follows. Firstly, the influence of combined stresses in
plasticity is included. Moreover, we avoid piecewise linearizing
the nonlinear yield surface [8], since this can lead to inaccuracies
and introduces a larger, often prohibitive, number of variables. In
spite of this nonlinearity, our proposed algorithm appears to have,
from the numerical tests performed, the capability to process suc-
cessfully the problem. Secondly, we extend our approach to more
sophisticated finite element models, such as those constructed
from the plane strain mixed finite element developed by Capsoni
and Corradi [9,10]. This element advantageously offers a locking
free capability in incompressibility as well as coarse mesh accu-
racy. A number of examples, two of which are reported herein,
have been successfully solved. The best upper bounds have thus
been computed and the influence of frictional coefficient can be
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assessed. A comparison of associative against nonassociative fric-
tion laws can also be made.

The generic idea underpinning our approach is to formulate,
within a mathematical programming framework, the extended
limit analysis by simply collecting the governing relations (static,
kinematic and material constitution) for the analysis, augmented
by the frictional contact conditions. This leads to a special mathe-
matical programming problem known as a mixed complementar-
ity problem (MCP) [11]. For the nonassociative friction model,
the MCP, however, may admit multiple collapse load solutions
[7]. We attempt to directly capture the critical (least) upper bound
solution by formulating and solving the proposed limit analysis as
a nonconvex and nonsmooth optimization problem known in the
literature as a mathematical program with equilibrium constraints
(MPEC) [12]. The feature (and difficulty) of an MPEC lies in the
presence of disjunctive complementarity constraints.

The organization of this paper is as follows. In the next Section
2, we review the basic conditions for the adopted unilateral fric-
tional contact model. Section 3 describes our discrete finite ele-
ment model and the governing relations. In Section 4, the
extended limit analysis is formulated first as an MCP. We show
that the necessary skew-symmetric conditions, necessary for the
existence of a dual pair of bound theorems, can be recovered when
piecewise linearization and associative friction are assumed. The
MPEC formulation is then presented together with a mention of
some computational difficulties that can arise for this class of prob-
lems. We outline in Section 5 three nonlinear programming (NLP)-
based solution algorithms that we have used to solve MPECs. In
brief, the MPEC is processed as a series of iterative NLP subprob-
lems after suitably “treating” the complementarity constraints.
Two numerical examples are provided in Section 6. The first exam-
ple involves a multistory frame modeled using bar elements [13],
whilst the second considers a plane strain structure obeying von
Mises yield criteria modeled using mixed finite elements [9,10]. Fi-
nally, some pertinent concluding remarks are drawn in Section 7.

A word regarding notation is in order. Vectors and matrices are
indicated in bold. A real vector X of size m is indicated by x ¢ R™
and areal m x n matrix Aby A € R™". For brevity, a vector of func-
tions f(x) : R™ — R" is written simply as f € R".

2. Basic contact conditions

The basic contact conditions [7,13] that apply at any unilateral
frictional contact point k at an inclination f are reviewed. This can
be briefly described with reference to Fig. 1, where subscripts n and
t denote respectively the normal and tangential directions to the
interface. A general friction law is shown in Fig. 1b, where ¢ define
the friction angle (tan¢ represents the traditional coefficient of
friction u), ¢ is the dilatancy angle (¢ =0 for Coulomb friction),
(rk,r*) are interface forces and (ik,u¥) are the corresponding
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Fig. 1. Generic frictional contact k (a) forces, (b) general friction law.

displacement rates at the contact point. The mechanical behavior
at this generic contact node can be considered separately in the
normal and in the tangential directions at the interface. This is de-
tailed in the following. All contacts are also assumed to have a zero
initial gap with the fixed ground.

In the first instance, sliding in either of two opposite directions
of the contact k is modeled through the following complementarity
conditions:
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where variables (% and {-* are sliding multiplier rates (named in
analogy with plastic multiplier rates used in plasticity). In essence,
similar to yield conditions in plasticity (see e.g. [8]), relations (1)
and (2) indicate that sliding can only occur if limiting friction has
been reached.

The nonpenetration (Signorini) condition is governed by the fol-
lowing obvious complementarity condition, expressed in rate
form:

k
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Clearly, (3) describes the fact that if —u* > 0, then r¥ = 0, and that if
—uk =0, then ¥ > 0. Physically, this relation embodies the require-
ment that nodes cannot penetrate rigid obstacles.

3. Generic finite element model

A suitably space discretized rigid perfectly-plastic structural
system for which some of the supports may be subjected to fric-
tional contact condition of the afore-mentioned type is considered.
It is assumed that the structure under consideration has been dis-
cretized as an aggregate of finite elements. The material behavior is
directly reflected by the elemental behavior. More explicitly, we
refer to the class of finite elements expressed in intrinsic, natural
(in Prager’s generalized sense) variables [8]. This implies that the
scalar product of generalized stress Q' and plastic strain rate pi vec-
tors represents virtual work in the element i concerned and is
invariant with respect to rigid body motion. Two obvious examples
of this element class are bars (trusses and lumped compliance
frame elements) and constant strain, homogeneous two- and
three-dimensional elements (3-node plane stress triangles and 4-
node tetrahedrons, respectively).

The external loads are proportionally applied, through a single
load multiplier o, to the nodes. Distributed loads are simulated
as equivalent concentrated forces applied on an appropriate num-
ber of nodes. The unconstrained nodal forces F,, defined with re-
spect to a global reference axis system, are then expressed in
terms of the load multiplier « and the given basic nodal load vector
f as F = of'.

Within the assumed small deformation regime, both equilib-
rium and compatibility relations are linear. In particular, equilib-
rium between the nodal applied forces «f’, the interface forces
(rk,7%) and the elemental stress resultants Q' can be described as

CTQ! = af' — CTrk — Tk, (4)

where C' is an elemental linear compatibility matrix, and C¥ and C
are compatibility matrices pertaining to frictional support k in the
normal and tangential directions, respectively. The compatibility
condition between the nodal displacement rates w' and the plastic
strain rates p' is given by

p'=Cu. (5)

As already mentioned, the constitutive law adopted is based on
a rigid perfectly-plastic material assumption. The relations
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