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a b s t r a c t

Traditional uncertainty quantification in multi-physics design problems involves the propagation of para-
metric uncertainties in input variables such as structural or aerodynamic properties through a single, or
series of models constructed to represent the given physical scenario. These models are inherently impre-
cise, and thus introduce additional sources of error to the design problem. In addition, there often exists
multiple models to represent the given situation, and complete confidence in selecting the most accurate
model among the model set considered is beyond the capability of the user. Thus, quantification of the
errors introduced by this modeling process is a necessary step in the complete quantification of the
uncertainties in multi-physics design problems. In this work, a modeling uncertainty quantification
framework was developed to quantify to quantify both the model-form and predictive uncertainty in a
design problem through the use of existing methods as well as newly developed modifications to existing
methods in the literature. The applicability of this framework to a problem involving full-scale simulation
was then demonstrated using the AGARD 445.6 Weakened Wing and three different aeroelastic simula-
tion packages to quantify the flutter conditions of the wing.

� 2010 Elsevier Ltd. All rights reserved.

1. Introduction

In many multi-physics design problems, such as aeroelasticity,
multiple models often exist to represent the given physical sce-
nario. Examples of this are numerous in the variety of aeroelastic
simulation packages that are available to users ranging from panel
methods, such as those available in Nastran [1] or ASTROS [2], to
full CFD simulations coupled with dynamic structural responses
such as ZEUS [3] or Navier–Stokes solvers [4]. Often, these models
produce different results for the same set of design parameters.
This variation in results is due to the different assumptions that
are made in the mathematical formulations of the individual mod-
els. Traditional uncertainty quantification methods in aeroelastic
design involve selecting the best model among the model set being
considered and then propagating the uncertain input variables
through the model to calculate a non-deterministic response of
the system. However, one primary flaw with this methodology in
that it is beyond the capability of the designer to select with com-
plete certainty the model which is most accurate in all areas of the
design space. Although a particular model might be shown to be
most accurate, or ever fully correct, at a particular point in the de-
sign space, this result cannot be inherently translated to all regions

of the design space. A simple example of this could be that
although a model might be shown to be accurate in the subsonic
Mach regime, there is no guarantee that it will maintain its accu-
racy in the transonic or supersonic Mach regimes. It is thus pro-
posed that instead of utilizing only a single model in the
uncertainty quantification of the design process, that multiple
models be considered, in a systematic fashion, so that the addi-
tional uncertainty introduced to the design problem through the
modeling process can be quantified and mitigated, and the total
uncertainty in the problem can be completely quantified. This
work introduces an uncertainty quantification framework that
quantifies the uncertainties introduced through the modeling pro-
cess by utilizing existing methods in the literature – with relevant
modifications in particular methods – to construct a complete and
accurate representation of the modeling uncertainty that is present
in an analysis.

2. Background and methods

2.1. Uncertainty definition

In the process of discretizing a physical scenario for modeling,
assumptions are made to achieve a simplified representation of
the problem. As it is beyond the capability of the designer to com-
pletely understand any true engineering problem in its full com-
plexity, these assumptions can produce a discrepancy between
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the physical scenario and the results produced by the model,
meaning that the resulting model is merely a partial representation
of reality. This discrepancy between the result of the model and the
true physical scenario is referred to as predictive uncertainty [5],
and the degree of this uncertainty is often a function of the ability
of the model to capture the phenomena in the physical scenario of
interest.

It is also very common in engineering problems for multiple
models to be constructed to represent the same given scenario.
Guedes Soares states that in situations such as this, there exists
only one correct model [6]. However, it is beyond the capability
of the designer to select the model which is correct in every given
situation. Thus, there exists uncertainty in the selection of the
model which best represents the physical scenario of interest. This
uncertainty in the identification of the best model among a model
set that is being considered is referred to as model-form uncer-
tainty [7].

To analyze the discretization of the physical scenario, parame-
ters are defined within the models to represent aspects of the
physics, such as dimensions, material properties, environmental
conditions, or modeling constants. Although these parameters are
often represented as deterministic values within the model, they
rarely can be considered deterministic in the true physical sce-
nario. As a result, there exists a third type of uncertainty in the
modeling process – parametric uncertainty – which refers to the
uncertainty inherent to the parameters that are input into a model
[5]. These parametric uncertainties are commonly split into two
distinct categories: aleatory and epistemic uncertainty [8]. Alea-
tory uncertainty is defined as the uncertainty that arises as a result
of natural, unpredictable variation in the performance of the sys-
tem [9]. This type of uncertainty is commonly thought of as the
type of uncertainty of which enough information is known to as-
sign probability density functions to represent the random nature
of the variable. Epistemic uncertainty, on the other hand, is defined
as the type of uncertainty that is due to the lack of knowledge
regarding the behavior of a system that could, in theory, be re-
solved through the introduction of additional information [10].
Epistemic uncertainty is commonly referred to as incomplete
uncertainty; or more simply put, inherent variability of which
not enough is known to accurately approximate the uncertainty.

Model-form, predictive, and parametric uncertainties are all
present in modeling problems. Eq. (1) shows the general formula-
tion of a modeling problem as the function of three variables, ~f i; ~x,
and ê:

y ¼ ~f ið�xÞ þ êi ð1Þ

~f ið�xÞ represents the result of a particular model, model i, to a set of
input parameters, �x. êi represents the discrepancy between the re-
sult of model i, and the true physical scenario, y. In this regard,
the possibility of disagreement between multiple ~f ið�xÞ can be said
to represent model-form uncertainty, the variation in ~f ið�xÞ due to
uncertainties in the set of input parameters, �x can be shown to
represent parametric uncertainty, and ê represents the predictive
uncertainty inherent to model i.

Although the above three types of uncertainty are defined un-
iquely, they are not necessarily independent of each other. Meth-
ods that exist in the literature to quantify uncertainty of a
particular form – such as parametric uncertainty – are not neces-
sary applicable, or even valid, to quantify model-form or predictive
uncertainty. In aeroelastic design, extensive work has been done
working on the quantification of parametric uncertainty. Kurdi et
al. explored the effects of uncertainty on structural finite element
parameters, such as rib and skin sizes, in the transonic aeroelastic
regime using sampling based uncertainty quantification methods
for aleatory uncertainties in the parameters of an aeroelastic model
[11]. Ueda also explored the effects of aleatory uncertainties on
calculating the sensitivities of a structure to the uncertain variables
[12]. Tonon et al. further explored the uncertainties in the struc-
tural parameters in aeroelastic design, but explored the effects of
considering epistemic uncertainties in the problem outside of sim-
ply uncertainties in the individual parameters using random set
theory [13]. Pettit and Grandhi further quantified the epistemic
uncertainty in aerodynamic parameters, such as gust loads, to per-
form a reliability based optimization [14]. Although much work
has been done in the aeroelastic community regarding the quanti-
fication of parametric uncertainties, represented as both aleatory
and epistemic, little work has been done on the quantification of
the model-form and predictive uncertainty in these problems.
Due to the increasing complexity of aeroelastic models being con-
structed, as well as the advancement of aeroelastic modeling into
complex regions of the design space, it is important to quantify
these additional uncertainties in order to maintain a robust design
that accurately considers potential uncertainties in the design
problem from all possible sources, including the modeling process
itself.

2.2. Model-form and predictive uncertainty quantification methods

To quantify the uncertainties introduced in a modeling process,
multiple approaches have been developed that consider the results
of multiple models – and the presence of any available experimen-
tal data – to develop a non-deterministic representation of a com-
posite model. The first proposal of model combination as a method
to quantify the uncertainty between models was made by Barnard
[15], a rudimentary combination of multiple airline passenger
models. Roberts later suggested an aggregate distribution that
combines the opinions of two models using weighting factors
[16]. Leamer expanded on this idea, developing the basic paradigm
for what is now known as Bayesian model averaging by accounting
for the uncertainty in the selection of the model itself [17].

2.2.1. Bayesian model averaging
As opposed to basing a prediction of a physical scenario of inter-

est upon the results of a singular model, Bayesian model averaging
constructs a distribution for the adjusted model, Pr(y|D), as an
average of the posterior distributions of each of the N models
considered, weighted by its posterior model probability. If y is con-
sidered as the adjusted model of interest, then its posterior distri-
bution given experimental data, D, is shown in Eq. (2):

Nomenclature

E½j� expected value of a variable
Cov½j� covariance of a variable
AGARD Advisory Group for Aerospace Research and Develop-

ment
CFD computational fluid dynamics

FEM finite element method
PDF probability density function
BMA Bayesian model averaging
AFA adjustment factors approach
MAFA modified adjustment factors approach
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