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a b s t r a c t

The main issue of this paper is the stability analysis of elastic systems with random parameters using the
Generalized Stochastic Finite Element Method. The Taylor expansion with random coefficients of nth
order is used to express all random functions and to determine up to fourth order probabilistic moments
of the critical force or critical pressure. The response function method assists to determine higher order
partial derivatives of the structural response instead of the Direct Differentiation Method employed
widely before. This approach is examined on the classical Euler problem, 2D and 3D steel frames as well
as in addition to the cylindrical shell with some geometrical parameters defined as the Gaussian
variables. The comparison of the GSFEM versus the Monte-Carlo simulation on the Euler problem proves
the probabilistic convergence of this new technique.

� 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Stochastic or probabilistic buckling of the engineering struc-
tures is still an important research area since many of these struc-
tures exhibit unpredictable fluctuations of the material and
geometrical parameters [1–3]; they can also be subjected to
dynamic loadings [4,5]. These variations, sometimes of apparently
local character [6,7], may significantly change the critical force as
one may suppose on the basis of the Euler formula. The stability
theory has still many open questions, even in the area of simple
prismatic or thin-walled elastic beams, so that probabilistic analyt-
ical approaches are not of a general character and, furthermore, are
not available for more complex problems like buckling of plates
and/or shells with no trivial boundary conditions. The second
reason why to deal with this problem is that the critical behavior
is decisive for many structures which need to be optimally
designed and, as it is documented by the engineering practice, is
frequently not accounted for. Since the new Eurocodes for engi-
neering design introduce the necessity of probabilistic design and
reliability index determination, there is no doubt that this research
area may be important in at least civil engineering.

There are several numerical methods to analyze the buckling
phenomenon in the engineering systems with random parameters.
One may find a variety of works concerning the stability of struc-
tures with random parameters - besides the simulation techniques
such as crude or weighted Monte-Carlo scheme (MCS), the Metrop-
olis approaches, the spectral methods as well as hybrid semi-
analytical approaches one may find the entire family of perturbation

methods [8,9]. The main value of the last class for the engineers is
that the computational time is relatively short, there is no need to
use massive computers and that they are relatively easily imple-
mentable into any computer system. The quality of the stochastic
perturbation method (strongly) depends to a high degree on the
user’s programming skills to include as many higher order terms
as it is possible.

In the view of above, the main aim of this paper is to show the
application of the generalized nth order perturbation method
implemented into the academic FEM software to find the probabi-
listic moments for several engineering case studies: (a) the Euler
critical force, (b) single-aisle 2D and 3D steel frame model, (c) mul-
ti-aisle steel frame and (d) polymer underground semi-cylindrical
shell. The main goals here are (a) to validate the perturbation meth-
od against the MCS, (b) to compare 2D and 3D probabilistic models,
(c) to distinguish between various orders perturbation analyses and
various orders response polynomials and finally (d) to provide large
scale FEM analysis using the RFM technique. The integral part of the
computational tools employed in this work is the computer algebra
system MAPLE, which is used for both simulation purposes as well
as for the processing of the probabilistic characteristics and auto-
matic differentiation in the stochastic perturbation approach. This
technique does not require straightforward differentiation of
equilibrium equations and their further solution but enables a direct
determination of analytical polynomial interrelation between the
chosen structural response and given random input. This approach
is of a special value because of its wide applicability in nonlinear
problems of modern computational mechanics and engineering.
Now, the nonlinear weighted least squares fitting technique is
used instead of the classical Newton method to determine and
to smoothen all the structural response functions thanks to the
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application of symbolic calculus. Let us finally note that all the
numerical tests included in the paper deal with the Gaussian
random variables but having implemented all equations in symbolic
environment one may easily replace this distribution with some
non-Gaussian quantities [10] such as the lognormal or the Weibull
one, for instance. The main difficulty in this case would be practical
determination of its basic parameters and the results interpretation,
especially in engineering applications.

2. The generalized stochastic finite element method basis

Let us introduce the random variable b � b(x) and its probabil-
ity density function as p(b). Then, the expected values as well as its
central mth probabilistic moments are defined as

E½b� � b0 ¼
Z þ1

�1
bpðbÞdb ð1Þ

and

lmðbÞ ¼
Z þ1

�1
ðb� E½b�ÞmpðbÞdb: ð2Þ

The basic idea of this stochastic perturbation approach is to expand
all the input variables and all the state functions of the considered
problem via Taylor series about the additional expected values
using the parameter e > 0. In the case of random critical force Pcr

depending on some random input quantity b, the following expres-
sion is employed:

Pcr ¼ P0
cr þ

X1
n¼1

1
n!

en @
nPcr

@bn ðDbÞn; ð3Þ

where

eDb ¼ eðb� b0Þ ð4Þ

is the first variation of b around its expected value b0. We will derive
the expected value for the critical force Pcr in the view of above
expansion as

E½Pcr � ¼
Z þ1

�1
PcrðbÞpðbÞdb

¼
Z þ1

�1
P0

cr þ
X1
n¼1

1
n!

en @
nPcr

@bn Dbn

 !
pðbÞdb: ð5Þ

Let us remind that this power expansion is valid only if the state
function is analytic in e, the series converge and, therefore, any
criteria of convergence should include the magnitude of the pertur-
bation parameter; perturbation parameter is usually taken simply as
equal to 1 in engineering computations. Contrary to most previous
analyses in this area, now the quantity e is treated as the expansion
parameter in further analysis, so that it is included explicitly in all the
further derivations demanding analytical expressions.

From the numerical point of view, the expansion provided by
the formula (3) is carried out for the summation over the finite
number of components, whereas the integral given in definition
(5) is never calculated with infinite limits – usually it has lower
and upper bounds driven by physical meaning of the specific
parameter or just the experimental works. Having Gaussian input
in the form of b(x) or another symmetric probability distribution
function one can show that

E½Pcr � ¼ Pcrðb0Þ þ 1
2
e2 @

2Pcrðb0Þ
@b2 l2ðb

0Þ

þ 1
2m!

em @
2mPcrðb0Þ
@b2m l2mðb

0Þ þ � � � ð6Þ

This expected value can be calculated analytically or symbolically
computed only if it is given as some analytical function of the
random input parameter b; many existing models in various
branches of civil engineering can be adopted to achieve this goal
[11,12]. Computational implementation of the symbolic calculus
programs (with automatic partial differentiation of even complex
real functions), combined with powerful visualization of probabilis-
tic output moments, ensures the fastest solution of such problems.
Further, thanks to such a series representation of the random out-
put, any desired efficiency of the expected values as well as higher
probabilistic moments can be achieved by an appropriate choice of
the expansion length and some additional correction available in
the parameter e, which depend on the input probability density
function (PDF) type, interrelations between the probabilistic
moments, acceptable error of the computations etc. This choice
can be made by comparative studies with sufficiently long (almost
infinite) series of Monte-Carlo simulations or theoretical results ob-
tained from the direct symbolic integration. Similar considerations
lead to the 6th order expressions for a variance; there holds [13,14]

VarðPcrðbÞÞ ¼ e2l2ðbÞ
@Pcrðb0Þ
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Quite similarly, using the lowest order expansions, it is possible to
derive third central probabilistic moments as

l3ðPcrðb0ÞÞ ¼
Z þ1

�1
ðPcrðbÞ � E½PcrðbÞ�Þ3pðbÞdb
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as well as fourth central probabilistic moment in the form of

l4ðPcrðb0ÞÞ ¼
Z þ1
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Let us mention that it is necessary to insert the relevant central
probabilistic moments of the input random variable in each of those
equations to get the algebraic form convenient for symbolic compu-
tations. A recursive derivation of the particular perturbation order
equilibrium equations can be powerful in conjunction with
symbolic packages with automatic differentiation tools only; it
can potentially extend the area of stochastic perturbation technique
applications in computational physics and engineering outside the
random processes with small dispersion about their expected
values. Hence, there is no need to implement directly exact
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