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a b s t r a c t

The introduction of the Proper Generalized Decomposition (PGD) is presented for the layer-wise model-
ing of heterogeneous cylindrical shells. The displacement field is approximated as a sum of separated
functions of the in-plane coordinates and the transverse coordinate. This choice yields to an iterative pro-
cess that consists of solving a 2D and 1D problem successively at each iteration. In the thickness direction,
a fourth-order expansion in each layer is considered. For the in-plane description, classical Finite Element
method is used. The approach is assessed through mechanical tests for thin/thick and deep/shallow lam-
inated cylindrical shells. Both convergence rate and accuracy are discussed.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Composite shells are widely used in the industrial field (aero-
space, automotive, marine, medical industries . . .) due to their excel-
lent mechanical properties, especially their high specific stiffness
and strength. For composite design, accurate knowledge of displace-
ments and stresses is required. One way consists in considering
three-dimensional modelisation. However, due to the complexity
of such numerical simulations, it is suitable to represent the problem
as a two-dimensional model leading to the construction of shell
theories. There are two ways for defining the approximation of the
displacement field. A ‘‘pure shell model’’ can be considered in which
the displacement is associated with the local curvilinear vectors, and
strain and stress are deduced using differential geometry [1]. Alter-
natively, the shell-like solid approach [2] for obtaining shell FE is
widely used in commercial software, as it is more simple. In this case,
the displacement vector is defined in the global cartesian frame and
jacobian matrix transformation is used to express strain and stress
with respect to reference frame defined on the middle surface in or-
der to introduce the constitutive law. In this approach, differentia-
tion is simplified and the curvatures are not directly calculated [3].
So, the development of efficient computational models for the anal-
ysis of shells appears thus of major interest.

According to published research, various theories based on the Fi-
nite Element (FE) method for composite shells have been developed.
In the following, most of the mentioned works refer to the pure shell
model. Thus, two families of models [4] can be identified:

� the Equivalent Single Layer Models (ESLM), where the classical
Shell Theory (CST/Koïter) and First Order Shear Deformation
Theory (FSDT/Nagdhi) models can be found. The reader can
refer to [9] to have a description of the assumptions on the
strain for deriving different shell models. CST leads to inaccu-
rate results for composites because both transverse shear and
normal strains are neglected. Triangular and rectangular ele-
ments are used in [5–7] respectively, for shallow laminated
shells. FSDT is the most popular model due to the possibility
to use a C0 FE, but it needs shear correction factors and trans-
verse normal strain is always neglected. A rectangular isopara-
metric element based on a MITC approach is presented in a
recent work [8]. So, Higher-order Shear Deformation Theories
(HSDT) have been developed to overcome these drawbacks.
Sgambitterra et al. [10] proposes a three-node flat shell ele-
ment based on a 1,2-order theory including 7 parameters. A
HSDT with 9 parameters based on a nine-node quadrilateral
isoparametric element is developed by Kant and Menon [11].
A third-order theory with a four-node isoparametric element
including 7 parameters is considered in [12]. Different theo-
ries based on the Carrera’s Unified Formulation are addressed
in [13].
In the ESLM context, a simple way to improve the estimation of
the mechanical quantities consists in adding one zig-zag func-
tion (Murakami) in the expression of the displacement to intro-
duce the slope discontinuity at the interface between two
adjacent layers. It allows to describe the so-called zig-zag effect.
It has been carried out by Brank [14]. The approach includes 7
parameters and is based on the Reissner’s formulation. See also
the work of Bhaskar [15] based on a HSDT approach.
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� the Layer-Wise Models (LWM) where the expression of the
mechanical quantities is written in each layer. A quadratic tri-
angle element based on a constant shear angle is considered
in [16], but a shear correction factor is needed. A three-dimen-
sional shell element is proposed in [17]. A LW triangle FE is
developed in [18] with a condensation technique at the pre-pro-
cessing level. [19] deals with a hybrid strain flat triangular FE
based on the Hellinger–Reissner variational principle. Note that
the transverse normal and shear stresses are only taken into
account in [20] where a four-node isoparametric assumed
strain is considered. We can mention the eight-node 3D
hybrid-EAS solid shell element based on the Hu–Washizu vari-
ational principle in [21]. See also the previously mentioned
work [13]. In all the aforementioned works, the number of
unknowns depends on the number of layers.

As an alternative, refined models have been developed in or-
der to improve the accuracy of ESL models avoiding the addi-
tional computational cost of LW approach. Based on physical
considerations and after some algebraic transformations, the
number of unknowns becomes independent of the number of lay-
ers. We can mention the recent work of Yasin [22] dedicated to
shallow shells. A four-node quadrilateral element with 5 param-
eters is built. Shariyat [23] has also developed a so-called zig-zag
model including 15 parameters. A full compatible Hermitian rect-
angular elements are employed. It should be also mentioned the
work of Dau [1] where a C1 triangular six-node FE (Argyris–Ga-
nev) based on the Sinus model is considered involving 5 param-
eters. The approach ensures the continuity conditions of the
transverse shear stresses at the interfaces between two adjacent
layers.

For the present topics, it should be noted that the mentioned
works are based on the Finite Element method for linear elasticity
problem in mechanics and applied to laminated composites,
knowing that many other approaches (meshless, analytical,
semi-analytical . . .) are involved in open literature. Furthermore,
the fundamental subject about the shear and membrane locking
of shell is not addressed here. So, this above literature deals with
only some aspects of the broad research activity about composite
shells. An extensive assessment of different approaches for both
various theories and/or finite element applications can be found
in [24–31].

Over the past years, the Proper Generalized Decomposition
(PGD) [32–35] has shown interesting features in the reduction
model framework. It has been used in the context of separation
of coordinate variables in multi-dimensional PDEs [34]. And in
particular, it has been applied for composite beams and plates in
[36–40].

The main goal of this work consists in assessing the Proper
Generalized Decomposition to model cylindrical composite shell
structures. So, the present approach is based on the separation
representation where the displacements are written under the
form of a sum of products of bidimensional polynomials of
ðn1; n2Þ and unidimensional polynomials of z. A piecewise
fourth-order Lagrange polynomial of z is chosen. As far as the
variation with respect to the in-plane coordinates is concerned,
a 2D eight-node quadrilateral FE is employed. Using the PGD,
each unknown function of ðn1; n2Þ is classically approximated
using one degree of freedom (dof) per node of the mesh and
the LW unknown functions of z are global for the whole shell.
Finally, the deduced non-linear problem implies the resolution
of two linear problems alternatively. This process yields to a
2D and a 1D problems in which the number of unknowns is
smaller than a classical Layerwise approach. The interesting
feature of this approach lies on the possibility to have a high-
er-order z-expansion and to refine the description of the

mechanical quantities through the thickness without increasing
the computational cost. This is particularly suitable for the
modeling of composite structures.

We now outline the remainder of this article. First, the shell
definition and the differential geometry are recalled. Then, the
mechanical formulation is given. The principles of the PGD are
precised in the framework of our study. The particular assump-
tion on the displacements yields a non-linear problem and an
iterative process is chosen to solve this one. The FE discretization
is also described and finally, numerical tests are performed. A
preliminary convergence study is performed. Then, the influence
of classical assumptions on the strains and the number of numer-
ical layers are studied. The approach is also assessed for deep and
shallow shells and different slenderness ratios. The accuracy of
the results is evaluated by comparison with a 2D elasticity solu-
tion from [41].

2. Shell definitions and differential geometry

A shell C with a middle surface S and a constant thickness e, see
Fig. 1, is defined by Bernadou [42]:

C ¼ M 2 R3 : ~OMðn; n3 ¼ zÞ ¼ ~UðnÞ þ z~a3; n 2 X; �1
2

e 6 z 6
1
2

e
� �

where the middle surface can be described by a map ~U from a para-
metric bidimensional domain X as:

~U : X � R2 ! S � R3

n ¼ ðn1; n2Þ# ~UðnÞ
ð1Þ

In Fig. 1, the map ~U describing the shell middle surface (in grey)
and the local basis vectors are presented. The basis vectors ~ai are
defined for a point on S and the basis vectors ~gi are defined for a
generic point of the shell.

For a point on the shell middle surface, the covariant basis vec-
tors defining the tangent plane to the middle surface are usually
obtained as follows:

~aa ¼ ~Uðn1; n2Þ;a; ~a3 ¼
~a1 �~a2

jj~a1 �~a2jj
ð2Þ

where~a3 is the unit normal vector to the surface S, see Fig. 1. In Eq.
(2) and further on, latin indices i; j; . . . take their values in the set
f1;2;3g while greek indices a; b; . . . take their values in the set
f1;2g. The summation convention on repeated indices is used and
partial derivative is denoted by ðÞ;a.

A shell is characterized by the first fundamental form aab and
the second one bab. Their covariant, contravariant and mixed form
definitions are given by:

aab ¼~aa � ~ab aab ¼~aa � ~ab bab ¼~aaa;b � ~a3 bb
a ¼~ab � ~a3;a ð3Þ

For a generic point of the shell, covariant basis vectors must be
defined and we have:

~ga ¼ ~OMðn; zÞ;a ¼ ðd
b
a � zbb

aÞ~ab ¼ lb
aðzÞ~ab and ~g3 ¼~a3 ð4Þ

where db
a is the Kronecker symbol and bb

a is the mixed form of the
second fundamental form. This basis ~gi, illustrated in Fig. 1, must
be used to define quantities for any point of the shell. The form
lb

aðzÞ introduced in Eq. (4) defines the transport from the shell
middle surface to any point of the shell and is associated with the
curvature variation along the thickness direction z of the shell.
The inverse tensor of the mixed tensor lb

a is denoted mb
a and is

defined as:

mb
a ¼ ðl�1Þba ¼

1
l
fdb

a þ z ðbb
a � 2Hdb

aÞg ð5Þ
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