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a b s t r a c t

The pseudo-excitation method is applied to determine the non-stationary vibration response of foot-
bridges to variable pedestrian excitation. Excitation forces are described by their spectral densities, the
models of which are taken from the literature. In addition a simple spectral model is proposed to encom-
pass both intra- and inter-pedestrian variability. Comparison is made to Monte Carlo simulations of ran-
dom pedestrian events and a means of estimating extreme statistics of random walking is given. The
method is shown to be accurate and efficient. Consequently, this work should find value in explaining
differences between observed and modelled responses.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

1.1. Background

Following well-known examples of footbridges that experi-
enced excessive vibrations there has been increased research into
the problem [1–3]. However, there remain differences between
the predications of most loading models and measurements of ac-
tual responses. For accurate assessment of the serviceability limit
state for footbridges, it is therefore essential that these differences
be minimized, and that their sources are well understood.

The main source of difference between measured and modelled
vibrations relates to the pedestrian and structure interaction, and
the inherent variability of pedestrian walking [4–6]. Many mea-
surements indicate both the obvious inter-pedestrian variability,
and variability of the induced walking forces for the same pedes-
trian; termed intra-pedestrian variability. Recent models have
been proposed to account for such variabilities [5–10]. Many of
these models make use of a frequency spectrum of walking forces.
However, a difficulty remains with the use of these spectra in that
many simulations are required in a Monte Carlo framework to esti-
mate the response of a footbridge to these force spectra and this
can render their usefulness limited.

This work applies the pseudo-excitation method (PEM) to
establish footbridge vibration response under pedestrian loading,
considering imperfect walking, for both inter- and intra-pedestrian

variability. This approach obviates the need for Monte Carlo simu-
lations, allowing the response to be found with minimal computa-
tional effort for any force spectrum. Using this method, the main
spectral models are evaluated and compared to a proposed simple
spectral model that can account for both intra- and inter-pedes-
trian variability. While the general approach developed here is ap-
plied for the vertical loading case, it is readily applicable to the
other important case of lateral vibration.

1.2. Pedestrian vertical loading

The vertical loads imparted by walking are often given by a Fou-
rier series of the form [1,2]:

FðtÞ ¼W þ
XN

j¼1

Wgj sinð2pjfpt �ujÞ: ð1Þ

The terms gj are the Fourier coefficients of the jth harmonic in the
series, and therefore represent the dynamic loading factor (DLF)
for that harmonic. Differing numbers of coefficients are used in
the literature [10–14]. There is also great variability in the mea-
sured values, even for the same pedestrian [15,16]. Further, DLFs
are found to vary with the frequency of the harmonic [17–20,9].
Table 1 gives some pertinent values.

1.3. Variability of pedestrian walking

The intra- and inter-pedestrian variability of walking forces is
found by many authors. Ingólfsson [21] and Ingólfsson et al. [22]
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describe the variation of vertical force power spectral densities
(PSDs) for both intra- and inter-pedestrian observed in a series
of experiments. Ingólfsson and Georgakis [23] report on the var-
iability of each of the first five harmonics of lateral force and
present a method using Gaussian fits to the average of the PSDs
around each harmonic. They also present the empirical distribu-
tion functions for each of the DLFs and use log-normal fits to
model them. Ricciardelli and Pizzimenti [24] also report similar
findings. Racic and Brownjohn [25] also provide results that show
pedestrian vertical force shows considerable deviation from ideal
Fourier series behavior. Brownjohn et al. [5] show that the
assumption of perfect periodicity of pedestrian vertical force is
not realized in practice by using a series of treadmill experiments.
This work will be considered in detail further on. Finally, Li et al.
[26] describe a novel approach using PSDs of pedestrian loading,
based on the footfall forcing function and the arrival rates of
pedestrians.

2. Spectral modeling of pedestrian-induced forces

2.1. Models in the literature

With the realization that the forces induced by walking are so
variable both by the same person (intra-pedestrian) and between
people (inter-pedestrian), the spectral approach to address the
phenomenon is gaining increasing attention. There are many
works that discuss this approach [6,27] but only a few that suggest
spectral models for pedestrian-induced forces.

Brownjohn et al. [5] and Racic and Brownjohn [7] use treadmill
experiments to show that perfect periodicity of pedestrian vertical
force is not realized in practice. This ‘imperfect’ real walking is de-
scribed by its auto-spectral density function and used to quantify
the structural response to this real walking. Racic and Brownjohn
[7] focus on lateral pedestrian forces and use a weighted sum of
17 Gaussian functions to fit the measured auto-spectral density.

Nomenclature

The following symbols are used in this paper:
f frequency variable, uniformly modulated evolutionary

stochastic excitation
�f normalized frequency parameter of Brownjohn et al. [5]
�f j frequency ratio of jth harmonic for the model of Zivano-

vic et al. [9]
~f pseudo evolutionary excitation
fp pacing frequency (Hz)
g modulation function, acceleration due to gravity
k time or distance step number
m number of frequency divisions
mP pedestrian mass
pmax percentile of maximum response distribution
sXX one-sided auto-spectral density for single pedestrian

walking
v0 mean zero-crossing rate
x input excitation process
~x pseudo excitation force, subscripts R and I indicate the

real and imaginary components.
y response process
ymax maximum response
~y pseudo response, subscripts R and I indicate the real and

imaginary components
Ai parameter for ith harmonic of the simple spectral model
Ai,k parameter for kth curve of ith harmonic in the models of

Zivanovic et al. [9] and the empirical spectral model
Bi,k parameter for kth curve of ith harmonic in the model of

Zivanovic et al. [9] and the empirical spectral model
Ci,k parameter for kth curve of ith harmonic in the model of

Zivanovic et al. [9] and the empirical spectral model
E[�] expectation operator
F evolutionary excitation random process

F0 amplitude of sinusoidal excitation force
F(t) pedestrian forcing function
G(�) Gumbel distribution function
H(�) frequency response function
K(�) kernel density function
M number of points in discrete spectral density; number of

time or distance steps
N number of harmonics in pedestrian forcing function;

number of frequency points, number of Monte Carlo
simulations

S one-sided auto-spectral density for excitation X, or re-
sponse, Y, or modulated force F

T duration of equivalent stationary process
Var[�] variance operator
W pedestrian weight
X input random process
Y response random process
a Gumbel distribution location parameter
b Gumbel distribution scale parameter
/(l, r) normal distribution probability density function with

mean l and standard deviation r
uj phase of the jth harmonic
c Euler constant, approximately 0.5772
gj dynamic load factor of the jth harmonic
ki the ith spectral moment
ls,i mean of normal distribution of ith harmonic for single

pedestrian in the simple spectral model
rs,i standard deviation of normal distribution of ith har-

monic for single pedestrian in the simple spectral model
rK,i kernel density bandwidth for ith harmonic
Df frequency step

Table 1
Some dynamic load factors (DLFs) from the literature.

Harmonic Young [17] ISO 10137 [18] Brownjohn et al. [5]

i Frequency DLF (gi) Frequency (Hz) DLF (gi) Frequency (Hz) DLF (gi)

1 1–2.8 0.41(f � 0.95) 6 0.56 1.2–2.4 0.37(f � 1.0) 1.3–2.4 0.37(f � 0.42)
2 2–5.6 0.069 + 0.0056f 2.4–4.8 0.1 2.6–4.8 0.053
3 3–8.4 0.033 + 0.0064f 3.6–7.2 0.06 3.9–7.2 0.042
4 4–11.2 0.013 + 0.0065f 4.8–9.6 0.06 5.2–9.6 0.041
5 – – 6.0–12.0 0.06 6.5–12.0 0.027
6 7.8–14.4 0.018

Note: for worst case, a phase angle of zero is used for all harmonics.
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