
Dynamic condensation approach to the calculation of eigensensitivity

Shun Weng a,1, Ai-Zhu Zhu a,⇑, Hong-Ping Zhu a,2, Yong Xia b,3, Ling Mao a, Peng-Hui Li a

a School of Civil Engineering & Mechanics, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
b Department of Civil & Structural Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

a r t i c l e i n f o

Article history:
Received 3 March 2013
Accepted 24 October 2013
Available online 5 December 2013

Keywords:
Dynamic condensation
Eigensensitivity
Eigenvalue derivative
Eigenvector derivative
Large structure

a b s t r a c t

Calculation of the eigensensitivity of a large and complex structural system requires considerable com-
putational resources and is time-consuming. This paper derives the eigenvalue and eigenvector deriva-
tives of a structure based on a dynamic condensation technique. The eigensensitivity of a structure are
computed by iteratively updating the derivatives of the condensed system matrices and a transformation
matrix. As the condensed model is much smaller than the original full model, the proposed method is
quite efficient in the calculation of the eigensensitivity. The accuracy and efficiency of the proposed
method are verified by the GARTEUR structure and a cantilever plate.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

An accurate finite element (FE) model is frequently required for
the structural analysis in the aerospace, mechanical and civil
engineering. To accurately describe the practical structure, the
analytical model of a large-scale structure is usually represented
by a complex model, including a large number of elements, degrees
of freedom (DOFs) and structural parameters. The eigen-analysis
based on the large-size model might take up considerable
computation storage and be time-consuming. Model condensation
(or reduction) method is an efficient technique to give fast compu-
tation of some lowest eigensolutions of the large structures [1].

Model condensation methods remove some DOFs (slave DOFs)
of the original FE model and represent the discarded DOFs with
the retained DOFs (master DOFs). Afterwards, the eigenfunction
of the reduced model is solved to approximate the eigensolutions
of the original structure [2–6]. Model condensation technique has
been used in a variety of engineering and mechanical problems.
Since the master DOFs have much smaller size than the full model,
the computational resource and time are saved. In addition, the
model condensation technique will be more promising if it is com-
bined with the substructuring methods. Most substructuring
methods constrain the interface coordinates of the substructures

to recover the global structure [7–11]. If the interface DOFs are
selected as the master DOFs to be analyzed, the substructuring
method can be performed on the reduced model instead of the full
model [9,10]. Finally, the model condensation technique has been
used in the experimental modal analysis and related fields. In the
experimental modal testing, the measured points are usually much
fewer than the DOFs of the analytical model. The analytical
models are required to be reduced to match the experimental
counterparts. The model condensation technique is also useful in
the determination of the sensor position in the experiments
[12,13].

The model condensation methods have been widely developed
to calculate the eigensolutions. Guyan [14] and Irons [15] firstly
proposed the static condensation technique to calculate the eigen-
solutions, which neglected the inertia terms associated with the
slave DOFs completely. It is exact at zero frequency and is accept-
able for the lower frequency modes. O’Callahan [16] proposed the
Improved Reduced System (IRS) method, which added an extra
term to the static reduction transformation to include some inertia
forces. Friswell et al. [17,18] developed a dynamic IRS strategy to
achieve the accurate eigensolutions by an iterative scheme. Xia
and Lin improved the dynamic IRS method, and proposed the
iterative order reduction (IOR) method [2,3]. This improvement
was proved to converge much faster than the dynamic IRS method,
especially for the higher modes [2]. Qu et al. [5] defined the
dynamic condensation matrix in the state space, and proposed an
iterative dynamic condensation method for the model reduction
of the viscously damped vibration systems. As the selection of
master DOFs heavily influences the accuracy and efficiency of the
model condensation methods, Jeong et al. proposed a rational
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method for selecting the master DOFs based on the ratio of
DOF-wise energy distributions [12].

The eigensensitivity is usually calculated together with the
eigensolutions. It provides an estimate of the changes in the eigen-
solutions caused by the perturbations of the design parameters of a
structural model. In model updating or optimization process, the
eigensensitivity serves for indicating the searching direction of an
optimization algorithm, which endows the more sensitive parame-
ter (with respect to the objective function) a higher priority [9]. The
eigensensitivity is usually calculated based on the full model of a
structure [19,20]. Fox and Kapoor [21] firstly utilized the modal
method to determine the eigenvalue and eigenvector derivatives
with respect to the physical parameters in the mass and stiffness
matrices. The modal method requires the superposition of the
eigenmodes of the system to calculate the required eigenvalue
and eigenvector derivatives. Nelson [22] proposed an exact method
to calculate the eigenvector derivative of one mode by using the
modal parameters of that mode only. Nelson’s method has been fur-
ther improved in terms of computational efficiency [23], and has
also been generalized by taking into account the rigid body modes
and/or the repeated modes [24,25]. Another approach for the eigen-
sensitivity computation is based on an algebraic formulation [26].
The derivatives of each eigenvalue and its associated eigenvector
are computed simultaneously by solving a group of algebraic equa-
tions. In the above methods, the eigensensitivity is calculated on
the full model of a structure. As the measured points in the exper-
iment are usually much fewer than the DOFs of the analytical mod-
el, the eigensensitivity of the analytical model is necessary to be
reduced to match the experimental counterparts. It is time consum-
ing and wasted to calculate the eigensensitivity of the full model
and then reduce it to match the measured points.

This paper derives the eigensensitivity formula based on a re-
duced model using the dynamic condensation algorithm. The DOFs
associated with the selected elemental parameter are retained as
the master DOFs. Consequently, the change of the elemental
parameter is localized within the stiffness and mass matrices of
the master DOFs. The eigensensitivity of the reduced model can
be obtained by directly performing iterations on the stiffness and
mass matrices of the master DOFs, which consumes a small
amount of computation time. The accuracy and efficiency of the
proposed method are verified by the GARTEUR frame and a canti-
lever plate.

2. Basic dynamic condensation method for eigensolutions

In general, the free vibration of an undamped structure with N
DOFs is described by the eigenequation [27]

ðK� kiMÞUi ¼ 0 ð1Þ

where K is the N � N symmetric stiffness matrix and M is the N � N
symmetric mass matrix of the full model. ki is the ith eigenvalue,
and Ui is the associated mass-normalized eigenvector. If the full
DOFs of a structure are divided into nm master DOFs and ns slave
DOFs, the eigenequation is divided according to the master and
slave DOFs into [2,3,16–18]

Kmm Kms

Ksm Kss

� �
� ki

Mmm Mms

MT
ms Mss
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Um

Us

� �
i

¼
0
0

� �
ð2Þ

The subscripts ‘m’ and ‘s’ respectively represent the master and
slave DOFs, and N = nm + ns. Um represents the eigenvector of the
master DOFs, and Us represents the eigenvector of the slave DOFs.
Superscript ‘T’ represents the transpose of a matrix. For conve-
nience, k and U represent one mode only, and the subscript ‘i’ is
omitted in the following analysis.

The second line of Eq. (2) gives

Us ¼ �ðKss � kMssÞ�1 KT
ms � kMT

ms

� 	
Um ¼ tUm ð3Þ

where t is the transformation matrix in relating Um and Us. In con-
sequence, the complete eigenvector is represented by the master
eigenvectors as

U ¼
Um

Us

� �
¼

Im

t

� �
Um ¼ TUm ð4aÞ

T ¼
Im

t

� �
ð4bÞ

where T is the transformation matrix in relating Um and U. In ma-
trix T, Im is the unit matrix of order nm, and t takes the form of [2,3]

t ¼ �ðKss � kMssÞ�1 KT
ms � kMT

ms

� 	
ð5Þ

Substituting Eq. (4a) into Eq. (2) and pre-multiplying Eq. (2) by TT,
one can obtain a reduced eigenequation of order nm as [2,3]

ðKR � kMRÞUm ¼ 0 ð6Þ

where KR = TTKT and MR = TTMT are the reduced stiffness and mass
matrices, and they can be written as

MR ¼ TT MT ¼ Im tT

 � Mmm Mms

Msm Mss

� �
Im

t

� �

¼ ½Mmm þMmst� þ tT MT
ms þMsst

h i ð6aÞ
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The reduced eigenequation (Eq. (6)) has the order of nm, which is
much smaller than the original eigenequation of order N. The
system matrices KR and MR are frequency dependent and the ei-
gen-problem cannot be solved directly by the usual eigensolver.
Pre-multiplying Eq. (5) by the (Kss � kMss), one has

ðKss � kMssÞt ¼ � KT
ms � kMT

ms

� 	
ð7Þ

From Eq. (7), the transformation matrix t can be written as

t ¼ �K�1
ss KT

ms þ kK�1
ss MT

ms þMsst
� 	

¼ tG þ td ð8Þ

where

tG ¼ �K�1
ss KT

ms ð8aÞ

td ¼ kK�1
ss MT

ms þMsst
� 	

¼ K�1
ss MT

ms þMsstG þMsstd

� 	
ð8bÞ

Subscript ‘G’ represents a item of the Guyan static condensation
[14], which is a static item and is determined directly without iter-
ation. Subscript ‘d’ represents a dynamic item, which is frequency
dependent and will be achieved by an iteration process.

The dynamic stiffness matrix of the reduced model can be
rewritten as [2,3]

ðKR � kMRÞ ¼ ½Kmm þKmsðtG þ tdÞ� þ ðtG þ tdÞT KT
ms þKssðtG þ tdÞ

h i
� k½Mmm þMmsðtG þ tdÞ� þ ðtG þ tdÞT MT

ms þMssðtG þ tdÞ
h i

¼ KG � kMd

ð9Þ

where

KG ¼ Kmm � KmsK
�1
ss KT

ms ð9aÞ

Md ¼ ½Mmm þMmst� þ tT
G MT

ms þMsst
h i

ð9bÞ
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