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a b s t r a c t

This paper presents an adaptation of the Dynamic Relaxation method for the form-finding of small-strain
compressive structures that can be used to achieve project-specific requirements such as prescribed ele-
ment lengths. Novel truss and triangle elements are developed to permit large strains in the form-finding
model while anticipating the small-strain behavior of the realized structure. Forcing functions are formu-
lated to permit element length prescription using a new iterative technique termed Prescriptive Dynamic
Relaxation (PDR). Case studies of a segmental concrete shell and a pedestrian steel bridge illustrate the
potential for using PDR to achieve economic and environmentally considerate structural solutions.

� 2013 Elsevier Ltd. All rights reserved.

1. Dynamic Relaxation and structural form-finding

Dynamic Relaxation (DR) was first proposed by Day in 1965 as
an alternative analysis tool for indeterminate structures [1]. Using
equations derived from the second law of motion, DR transforms a
nonlinear static problem into a pseudo-dynamic one in which the
displacements are updated via a time-stepping procedure to
achieve a sufficiently equilibrated state. Since its inception, DR
has been used as a nonlinear solver for a broad range of analytical
problems [2] but was first used as a form-finding tool for tensile
structures by Barnes [3–6]. DR has since been employed for the
form-finding of cable-membrane structures [7], grid shells [8,9],
continuous shells [10,11], and tensegrity structures [12,13].

Form-finding techniques can be assigned to three categories:
physical hanging models, equilibrium methods, and optimization
schemes. Physical hanging models, like those used by Antoni Gaudi
[14], Heinz Isler [15], and Frei Otto [16], typically rely on inexten-
sible cable networks to create purely axial systems under a gravi-
tational load. Equilibrium methods such as Dynamic Relaxation,
force density [17], stress distribution [18], thrust-network analysis
[19], and particle-spring [20] use iteration algorithms to manipu-
late nodal geometry to equilibrate method-specific internal forces
with applied external loads. Optimization schemes manipulate
control parameters, such as nodal coordinates, of a structural sys-
tem to provide an optimal solution for one criterion [21] or provide
a Pareto Front for multiple criteria [22].

An example of a simple form-finding problem is the two-
element truss shown in Fig. 1a. The basic formulation for form-
finding is to determine coordinates for unconstrained nodes such
that the system is in equilibrium. In this case, equilibrium is an
insufficient constraint for the form-finding process to be useful;
equilibrium would only restrain the free node from being posi-
tioned on the horizontal axis of the supports. Additional require-
ments can be introduced, for instance that all elements are in
compression (Fig. 1b); that both elements are equally loaded
(Fig. 1c); or that the right element is a certain length (Fig. 1d).
A union of these requirements would produce an intersection of
solution spaces resulting in one solution (Fig. 1e) or no solution
at all (Fig. 1f).

If the form-finding model is based on an equilibrium approach,
then the form-found shape will be influenced by the internal forces
experienced by the elements of the form-finding model. Depending
on the structural system, the forces in the model may differ from
those generated in the elements of the realized static structure.
For a determinate structure (Fig. 1), there exists only one solution
for the internal forces in the structure thereby requiring that the
element forces of the form-finding model match those of the real-
ized static structure. For an indeterminate structure, such as the
one shown in Fig. 2a, the distribution of forces will depend not only
on the form-found shape, but also on the relative stiffnesses of the
elements in the realized static structure. If the stiffness of any one
of the elements is negligible compared to the others, that element
will take negligible load (Fig. 2b–d). A desirable asset for a form-
finding technique is to be able to anticipate the stiffness of the sta-
tic structure. While geometry supplies one of the components of
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static stiffness, material properties and element dimensions also
contribute.

Neither equilibrium methods nor physical models have typi-
cally afforded significant opportunity for introducing material
properties; in fact, a recent review of form-finding techniques
identified the form-finding process as ‘material independent’
[23]. It is also common to consider the form-found shape as a
starting point to which dimensions can be assigned [24], e.g., by
density distribution [25,26]. While optimization schemes rely on
computational models with accurately defined material proper-
ties, they are not well suited for finding funicular shapes. For
compressive systems, the most efficient form is one that relies
on a resolution of external loads through axial internal forces
[27]. The physical hanging models exemplify Hooke’s frequently
used adage, ‘as hangs the flexible cable so, inverted, stand the
touching pieces of an arch,’ [28] by relying on cables that cannot
resist bending to produce shapes that when inverted are entirely
in compression.

It is possible to identify three desirable qualities for a form-
finding process for compressive systems:

1. Elements can only transmit axial loads
2. Material properties and dimensions of the realized structure are

included as parameters in the form-finding process
3. Project-specific requirements can be introduced systematically

Because DR is rooted in the analysis of real structures, it is well
suited for the form-finding of cable-membrane structures as it
simulates realistic structural behavior [7]. Accordingly, the authors
propose that DR is the best suited of the equilibrium methods for
incorporating realistic material properties to produce an axially-
driven form-finding process for compressive structures. The basic
DR algorithm used for this study is presented in Section 2. In
Section 3, we introduce a truss element and a triangular membrane
element for the form-finding of compressive structures. In
Section 4, we introduce the concept of Prescriptive Dynamic
Relaxation (PDR), which permits the achievement of certain
system requirements through a modification of the DR process.
In Section 5, we offer a method to achieve prescribed element
lengths using forcing functions in PDR. In Section 6, we provide
case studies demonstrating application to a concrete shell and a
steel pedestrian bridge.

2. The Dynamic Relaxation algorithm

The DR method presented in this section is adapted from Barnes
[5]. First, the Residual, Rt

i;x, at time t is calculated:

Rt
i;x ¼ Pi;x þ

X
j

X
coðkÞ¼i

Ft
i;j;k;x ð1Þ

where the indices i, j, k, and x refer to global node number, element
number, local node number, and directional degree of freedom; the
co() operator converts local numbering to global numbering; Pi,x is
the applied external load; and Ft

i;j;k;x is the element force vector.
Next, the updated velocity, VtþDt=2

i;x , is found:

VtþDt=2
i;x ¼

VtþDt=2
i;x þ Dt

Mi
Rt

i;x if ci;x ¼ 0

0 if ci;x ¼ 1

( )
ð2Þ

where Dt is the time step, Mi is the fictitious nodal mass, and ci,x is
the binary restraint value for the degree of freedom (0 if free, 1 if
restrained). The new nodal coordinates, xtþDt

i , are then found:

xtþDt
i ¼ xt

i þ DtVtþDt=2
i;x ð3Þ

To reach equilibrium, it is necessary to damp the system. Day intro-
duced viscous damping by multiplying the velocity term, Vt�Dt=2

i;x , by
an arbitrary damping constant, 0 < KV < 1 [1]. Kinetic damping, an
alternative to viscous damping, was first introduced by Cundall in
1976 [29]. To achieve kinetic damping, the kinetic energy, Kt, is
tracked at each iteration:

Kt ¼
X

i

MijVt�Dt=2
i j2 ð4Þ

When the kinetic energy is at a maximum (corresponding to mini-
mum strain energy), the velocity is set to zero. The iterations are
terminated when the system achieves a prescribed level of equilib-
rium. In this paper, a stringent criterion, fconv� 1, is implemented:

max8i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
x Rt

i;x

� �2
ð1� ci;xÞP

xðPi;xÞ2 þ ðWo
i Þ

2

vuuut � fconv ð5Þ

The numerator is the maximum of the current residuals, Rt
i;x, and the

denominator is the maximum of the applied loads calculated as a
sum of the external loads, Pi,x, and initial self-weight element con-
tributions to each node, Wo

i .
The DR iterative process can be summarized in three basic

steps:

1. Initialize model (e.g., starting geometry, material proper-
ties, boundary conditions, and loading)

2. Calculate element forces and residuals. If fconv is achieved,
output results and terminate.

3. Calculate velocities (adjusted to chosen method of damp-
ing) and nodal coordinates. Go to step 2.

Fig. 1. Form-finding of a determinate structure. Shaded areas indicate the search space imposed by the constraints.

Fig. 2. Form-finding of an indeterminate structure.
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