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a b s t r a c t

An element free Galerkin (EFG) based formulation for limit analysis of rigid-perfectly plastic plane strain
problems is presented. In the paper it is demonstrated that volumetric locking and instability problems
can be avoided by using a stabilized conforming nodal integration scheme. Furthermore, the stabilized
EFG method described allows stable and accurate solutions to be obtained with minimal computational
effort. The discrete kinematic formulation is cast in the form of a second-order cone problem, allowing
efficient interior-point solvers to be used to obtain solutions. Finally, the performance of the stabilized
EFG method is illustrated by considering several numerical examples.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The load required to cause collapse of a body or structure can be
directly estimated using limit analysis. Considering an upper-bound
kinematic limit analysis approach, the flow rule is required to be
satisfied everywhere in the problem domain. This requirement
can easily be met using constant strain finite elements. However,
it is well-known that such elements exhibit volumetric locking phe-
nomena when used in conjunction with von Mises or Tresca yield
criteria, due to the large number of incompressibility constraints
imposed on the nodal velocities [1–3]. Various solutions have been
proposed in the literature to overcome this problem. These include
the use of higher-order displacement-based finite elements [3,4],
mixed formulations [2,5–7] and kinematic formulations using dis-
continuous velocity fields [8–10]. Additionally a fully discontinuous
formulation which involves identification of the critical layout of
discontinuities at failure has been proposed [11].

Recently, Le et al. [12] proposed a numerical kinematic formula-
tion using the cell-based smoothed finite element method (SFEM)
and second-order cone programming (SOCP) to prevent the volu-
metric locking problem, and also to furnish good (approximate)
upper-bound solutions for plane strain problems governed by the
von Mises failure criterion. Alternately, meshfree methods can be
used. The element-free Galerkin (EFG) method, one of the first
meshfree approaches, has been applied successfully to a wide range
of computational problems, proving popular due to its naturally

conforming property (with no nodal connectivity required) and its
rapid convergence characteristics [13]. The EFG method has also
been applied successfully to limit analysis problems [14–16]. It
has been shown that the EFG method is in general well suited for
limit analysis problems, allowing accurate solutions to be obtained
with relatively few degrees of freedom. Following this line of re-
search, the main objective of this paper is to investigate the perfor-
mance of a stabilized EFG method when applied to plane strain limit
analysis problems, where volumetric locking can occur as a result of
the use of an unbounded yield criterion.

Volumetric (or ‘isochoric’) locking is caused by the use of approx-
imations which prevent certain velocity fields from being exactly
described [17]. When low-order finite elements are used, the
kinematic constraint (or ‘divergence-free’ or ‘incompressibility’ con-
dition) leads to a reduction in the available number of degrees of
freedom, and therefore the true velocity field cannot be exactly de-
scribed. However, meshfree methods generally provide high
-order shape functions [13,18], and therefore volumetric locking in
elasto-plastic analysis problems can be suppressed by increasing
the so-called dilation parameter [17,19,20], though not entirely
removed [21]. The locking problem can also be relieved by using
direct nodal integration or collocation methods, but these methods
often result in rank deficiency and thus can produce spurious singu-
lar modes [22,23]. In order to eliminate the spatial instabilities asso-
ciated with nodal integration, a stabilized conforming nodal
integration (SCNI) has been proposed in [24], which has then been
applied successfully to various problems [16,23,25,26]; see also
[27] for a description of how kinematic and equilibrium
approaches can be used in combination to obtain close bounds on
the exact solution for plate problems. In the present paper, which
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focuses on plane strain problems, it will be shown that when the
SCNI scheme is employed in the EFG-based kinematic formulation,
the solutions obtained are accurate and stable, and volumetric lock-
ing can also be prevented.

This paper is organized as follows: in the next section, the kine-
matic limit analysis formulation is briefly reviewed. The approxi-
mation used to describe the displacement field and the SCNI
smoothing technique are then presented, and the discrete formula-
tion is also given. In Section 4, the underlying optimization prob-
lem is cast in the form of a second-order cone problem, allowing
efficient interior-point solvers to be used to obtain solutions.
Numerical examples are provided in Section 5 to illustrate the abil-
ity of the proposed method to prevent volumetric locking, and
approximated upper bound solutions are then compared with
those in the literature.

2. Kinematic limit analysis

Consider a rigid-perfectly plastic body of area X 2 R2 with
boundary C, which is subjected to body forces f and to surface trac-
tions g on the free portion Ct of C. The constrained boundary Cu is
fixed and Cu [ Ct = C, Cu \ Ct = ø. Let _u ¼ _u _v½ �T be the velocity
or flow fields that belong to a space Y of kinematically admissible
velocity fields, where _u and _v are the velocity components in the x-
and y-directions respectively.

The external work rate associated with a virtual plastic flow _u is
expressed in linear form as

Fð _uÞ ¼
Z

X
fT _udXþ

Z
Ct

gT _udC ð1Þ

If C ¼ f _u 2 Y j Fð _uÞ ¼ 1g, then the collapse load multiplier k can be
determined by solving the following mathematical programming
problem

kþ ¼min
_u2C

Z
X

Dð _�ÞdX ð2Þ

where strain rates _� are given by

_� ¼
_�xx

_�yy

_cxy

2
64

3
75 ¼ r _u ð3Þ

and where the differential operator r is given by

r ¼

@
@x 0
0 @

@y

@
@y

@
@x

2
64

3
75 ð4Þ

The plastic dissipation Dð _�Þ is defined by

Dð _�Þ ¼ max
wðrÞ60

r : _� � r� : _� ð5Þ

in which r represents the admissible stresses contained within the
convex yield surface and r� represents the stresses on the yield sur-
face associated with any strain rates _� through the plasticity
condition.

In the framework of a limit analysis problem, only plastic
strains are considered and are assumed to obey the normality rule

_� ¼ _l
@w
@r

ð6Þ

where the plastic multiplier _l is non-negative and the yield function
w(r) is convex. In this study the von Mises failure criterion is used
(which is equivalent to the Tresca criterion in plane strain [5]). Thus

wðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
4
ðrxx � ryyÞ2 þ r2

xy

r
� r0 ð7Þ

where r0 is the yield stress.
Then the power of dissipation can be formulated as a function of

strain rates as [5]

Dð _�Þ ¼ r0

ffiffiffiffiffiffiffiffiffiffiffiffi
_�TH _�
p

ð8Þ

where

H ¼
1 �1 0
�1 1 0
0 0 1

2
64

3
75 ð9Þ

Note that condition (6) acts as a kinematic constraint which con-
fines admissible strain rate vectors. Since the yield surface w(r) is
unbounded, the incompressibility condition vT _� ¼ 0, where
v ¼ 1 1 0½ �T , must be introduced to ensure that the plastic dissi-
pation Dð _�Þ is finite [2,6,28,29].

3. EFG discretization of kinematic formulation

3.1. Moving least squares approximation

By using the moving least squares technique [13,30], which is
one of the most frequently used approximations in meshless meth-
ods, approximations of the displacement (or displacement rate)
fields can be expressed as

uhðxÞ ¼ uh

vh

" #
¼
Pn
I¼1

UIðxÞ
uI

v I

� �
ð10Þ

in which

UIðxÞ ¼ pTðxÞA�1ðxÞBIðxÞ ð11Þ

AðxÞ ¼
Pn
I¼1

wIðxÞpðxIÞpTðxIÞ ð12Þ

BIðxÞ ¼ wIðxÞpðxIÞ ð13Þ

where n is the number of nodes; p(x) is a set of basis functions and
wI(x) is a weight function associated with node I. In this work, an
isotropic quartic spline function is used, which is given by

wIðxÞ ¼
1� 6s2

I þ 8s3
I � 3s4

I if sI 6 1
0 if sI > 1

(
ð14Þ

with sI ¼ kx�xIk
RI

, where RI is the support radius of node I and deter-
mined by

RI ¼ b � hI ð15Þ

where b is the dimensionless size of influence domain and hI is the
nodal spacing when nodes are distributed regularly, or the maxi-
mum distance to neighbouring nodes when nodes are distributed
irregularly; further details can be found in [15]. In the next section,
a technique will be presented that allows the required order of dif-
ferentiation to be reduced by one, with the consequence that there
is no need to calculate shape function derivatives for the stabilized
EFG formulation.

3.2. Strain smoothing stabilization

A strain smoothing method was firstly presented in [31] for reg-
ularization of material instabilities. The strain smoothing method
was then modified for stabilization of nodal integration by [24]

~�h
ijðxJÞ ¼

Z
XJ

�h
ijðxÞuðx;x� xJÞdX ð16Þ

where ~�h
ij is the smoothed value of strains �h

ij at node J, and u is a dis-
tribution (or smoothing) function that has to satisfy the following
properties [31,32]
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