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a b s t r a c t

A decision maker is to choose between two different amounts of money, with the smaller one available
at an earlier period. Then she is long-term delay averse if she chooses the smaller and earlier extra amount
whenever the bigger one is delivered sufficiently far in the future. In this paper we study new topologies
on l∞ which ‘‘discount’’ the future consistently with the notion of long-term delay aversion. We compare
these topologies with other topologies that have the property of representing impatient, or patient,
preferences. Our results bear relevance on the theory of infinite-dimensional general equilibrium and
with the works that consider bubbles as the pathological (not countably additive) part of a charge. Finally
we develop a notion of more long-term delay aversion and we compare it with the concepts studied by
Benoît and Ok (2007).

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

One of the standard assumptions made in most economic mod-
els is that agents have preferences for advancing the time of future
satisfaction. This behaviour is commonly known with the term of
impatience.

This paper studies the preferences of a Decision Maker (DM)
over infinite flows of income. An alternative interpretation is to
think not of an agent but of different generations living in different
ages. In this case we will talk about a Social Planner who has
preferences over infinite streams of wealth (each period repre-
sents the wealth of one generation). In both situations, the natural
framework to model this infinite horizon problem is the study of
preferences over the set l∞ of bounded, real-valued sequences.

The classical way of describing impatient preferences is to use
the discounted sum of utilities. If the DM is facing a monetary flow
(x0, x1, . . .) then she evaluates it through the functional:

U(x0, x1, . . .) =

∞∑
t=0

δ(t)u(xt ).

The function u : R → R is an instantaneous utility function
that represents the utility derived by using a certain amount of
income. The decreasing function δ : N → (0, 1] is called discount
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function and it represents the willingness of the DM to anticipate
future consumption. Often, the function δ(t) = δt (where δ is
a real number in the interval (0, 1)) and the model is called the
exponential discounted utility model. The exponential discounted
utility model was proposed back in the thirties in a seminal paper
of Samuelson (1937). A further boost to its popularity was given
by Koopmans (1960)who showed that themodel could be derived
from a set of plausible axioms. Since then, it has become the
standard treatment of impatient behaviours in economics.

Departures from the classical discounted utility model are
present in the literature of mathematical economics. These devi-
ations consider functionals different from the discounted sum of
utilities presented above. For instance, Chateauneuf and Ventura
(2013) use the Choquet integral in order to analyse different kinds
of impatient behaviours. Marinacci (1998) characterizes complete
patience through the MaxMin model and Rébillé (2007) consid-
ers patience in the Choquet model. Finally in Bastianello and
Chateauneuf (2016) a concept called long-term delay aversionwas
introduced and analysed in both the Choquet andMaxMinmodels.

This paper does not follow any of the approaches aforemen-
tioned but instead considers a topological approach, pioneered
by Brown and Lewis (1981). We do not specify any utility function
for theDM, butwe rather focus on the continuity of her preferences
with respect to a suitable topology. The topology consideredmakes
the DM ‘‘discount’’ the future in away consistentwith the notion of
long-termdelay aversion proposed in Bastianello and Chateauneuf
(2016). Notice that the choice of the topology over the infinite
dimensional space l∞ is relevant for its behavioural implication.
Continuity is not a technical requirement, it is, in fact, a behavioural
assumption. Mas-Colell and Zame (1991) put it very sharply:
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‘‘It should be stressed that the choice of the topology can only
be dictated by economic, rather than mathematical, considera-
tions’’.

Instead of assuming discounted utility, we start from the de-
scription of long-term delay averse preferences. Long-term delay
aversionmeans the following. Suppose that an agent has to choose
between two extra payments of, say, 1000$ and 10000$. The 1000$
are paid on a fixed date whereas the 10000$ will be paid later. We
believe that, if the second and bigger payment is done sufficiently
far in the future, then she will choose the first one. More formally,
let us consider a DM who is supposed to receive two additional
amounts of income or consumption good, a and b, with 0 < a ≤ b,
delivered respectively in periods n0 and nwith n0 < n. Then she is
long-term delay averse if she prefers a over b if n is sufficiently big.

After presenting the main definition, we consider two Haus-
dorff locally convex topologies that represent a future-disliking
behaviour consistent with long-term delay aversion. The key idea
is that a suitable topology shouldmake a cash flowwhich pays one
unit of income in the nth period very close to the cash flow paying
zero at all periods, provided that n is big enough. Such a property
could be rephrased as ‘‘the far future is negligible’’.

Endowed with such topologies we proceed comparing them
with the strong andweakmyopic topologies introduced by Brown
and Lewis (1981). These topologies are fundamental in economics
and specifically in the theory of general equilibrium in infinite
dimension, see Mas-Colell and Zame (1991). Roughly speaking,
we find that the long-term delay averse topologies are finer than
the myopic topologies. This implies that it is easier to be long-
term delay averse rather than myopic and therefore, it is possible
to have preference for advancing the time future satisfaction and
still an equilibrium may fail to exist. Such a result clarifies a paper
of Araujo (1985), where the author shows that impatience is a
necessary condition to insure the existence of an equilibrium in an
infinite dimensional setting. Our results show that DMs should be
enough impatient to get an equilibrium.

Next, we study the property of the topological dual of l∞ when
paired with the long-term delay averse topologies. Dual spaces
play a major role in general equilibrium since the equilibrium
prices are functionals belonging to the dual space. Interestingly,
we find that the dual space is bigger than the one obtainedwith the
topologies usually considered. This entails the possibility of having
bubbles (in the sense of Gilles and LeRoy, 1992) even when agents
show a form of impatience.

As a dividend, we obtain a new characterization of the space ba
of bounded charges. This space is the dual of l∞ when paired with
a particular long-term delay averse topology.

We conclude the paper with a section devoted to the compar-
ison of two long-term delay averse DMs. We develop a notion of
more long-term delay aversion coherent with the one of long-term
delay aversion. Finally we discuss the relation of our notion with
the work of Benoît and Ok (2007). Loosely speaking, we find that
our definition of more long-term delay aversion is weaker than the
concept of more delay aversion and stronger than the concept of
more impatience studied by Benoît and Ok (2007).

The paper is organized as follows. Section 2 presents some
preliminary notions. Sections 3 and 4 present and analyse a long-
term delay averse topology and a long-term delay averse topology
with a monotone base respectively. Section 5 studies the notion of
more long-term delay aversion.

2. Preliminary notions

We study the preferences of a DM over the space l∞ of real-
valued bounded sequences. The generic elements of l∞ are denoted
as x, y, etc. and are considered as infinite streams of income. The

pth element of sequence x is denoted equivalently xp or x(p).
Clearly, the set N of natural numbers represents time.

The sum between two sequences and the multiplication by a
scalar correspond to the pointwise sum and multiplication, mean-
ing that if x, y ∈ l∞ andλ ∈ R then x+y = (x0+y0, x1+y1, . . .) and
λx = (λx0, λx1, . . .). The symbol 1A denotes the indicator function
of the set A ⊆ N, i.e. 1A(n) :=

{
1 if n ∈ A
0 if n ∈ Ac . Therefore 1A is the

sequence with 1A(p) = 1 if p ∈ A and 1A(p) = 0 if p ̸∈ A and
1k the sequence with all the elements equal to 0, but the element k
which is equal to 1. Hence given a sequence x, the sequence x+a1k
denotes the sequence y such that yk = xk + a and yn = xn for all
n ̸= k.

A vector space X is an ordered vector space with an order ≥ if X
is partially ordered by ≥ and if for every x, y, z ∈ X and every real
number λ ≥ 0, x ≥ y implies x + z ≥ y + z and x ≥ 0 implies
λx ≥ 0. The space we are considering, l∞, comes equipped with
a natural order. We write x ≥ y when xk ≥ yk ∀k, x ≫ y when
xk > yk ∀k and x > y when xk ≥ yk ∀k with a strict inequality for
at least one k. A sequence is non-negative if x ≥ 0 and l∞

+
denotes

the positive orthant of l∞ i.e. l∞
+

:= {x ∈ l∞ : x ≥ 0}.
Let X be an ordered vector space. A seminorm on X is a function

p : X → R such that∀x, y ∈ X and∀α ∈ R, (i) p(x+y) ≤ p(x)+p(y)
and (ii) p(αx) = |α|p(x). If moreover p(x) = 0 if and only if
x = 0, then p is called a norm. A locally convex topology is a topology
generated by a family of seminorms. We say that p is a monotone
seminorm if 0 ≤ y ≤ x ⇒ p(y) ≤ p(x). A subfamily of seminorms
Q is said to be a base for a family of seminorms P if for every p ∈ P
there is q ∈ Q and c > 0 s.t. p(x) < cq(x) for every x. In this case
we say that every seminorm p in P is dominated by a seminorm in
Q. A topology is said to be a locally convex topology with amonotone
base if the associated family of seminorms has a monotone base.

Regarding convergence of sequences or nets we use the follow-
ing notation. If {an}n∈N is a sequence of real numbers, an→n lmeans
that the sequence converges to the real number l ∈ R. If {xλ}λ∈Λ is a
net of elements of a set X endowedwith a topology T , then xλ

T
−→λ x

means that the net converges to the element x in the topology T . If
T is a locally convex topology generated by a family of seminorms
{pα, α ∈ A} then xλ

T
−→λ x if and only if pα(xλ − x)→λ 0 for every

α ∈ A (see Aliprantis and Border, 2006, Lemma 5.76). Sometimes
we may write only xn → x for convergence of sequences (or
xλ → x for convergence of nets)whenno confusion can arise about
the index and the topology that we are considering.

The symbol T∞ designates the sup-norm topology on l∞, that is
the topology generated by the supremum norm ∥x∥∞ = supk|xk|.
When l∞ is endowed with a particular topology T , its (topological)
dual with respect to T is the set of T -continuous linear functions
on l∞ and it is denoted (l∞, T )∗. Let T1 and T2 be two topologies on
l∞. If T1 ⊆ T2 we say that T1 is weaker (or coarser) than T2 or that
T2 is stronger (or finer) than T1. If additionally T1 ̸= T2, we write
T1 ⊊ T2 and we say that T1 is strictly weaker (or strictly coarser)
than T2 or that T2 is strictly stronger (or strictly finer) than T1.

A preference relation ≿ over l∞ is a complete, reflexive and
transitive binary relation, i.e. a weak order. Given a preference
relation ≿ we denote its symmetric and asymmetric parts by ∼

and ≻ respectively. We say that a preference relation over l∞ is
monotone if x ≥ y implies x ≿ y and strongly monotone if x > y
implies x ≻ y. A preference relation ≿ over l∞ is continuous with
respect to a topology T if the sets of the form {x|x ≻ y} and
{x|y ≻ x} are T -open for every y ∈ l∞.

Given a set X and a field F of its subsets, a set function µ :

F → R is called a charge if (i) µ(∅) = 0 and (ii) if A, B ∈ F and
A ∩ B = ∅ then µ(A ∪ B) = µ(A) + µ(B). A charge µ is said
to be bounded if sup{|µ(F )| : F ∈ F} < +∞. If µ(F ) ≥ 0 for
every F ∈ F then µ is said to be positive. If, given a sequence
of sets {An}n such that ∪nAn ∈ F and Ai ∩ Aj = ∅ for i ̸= j,



Download English Version:

https://daneshyari.com/en/article/5101354

Download Persian Version:

https://daneshyari.com/article/5101354

Daneshyari.com

https://daneshyari.com/en/article/5101354
https://daneshyari.com/article/5101354
https://daneshyari.com

