
An optimized BEM–FEM iterative coupling algorithm for acoustic–elastodynamic
interaction analyses in the frequency domain

D. Soares Jr. a,⇑, L. Godinho b

a Structural Engineering Department, Federal University of Juiz de Fora, CEP 36036-330 Juiz de Fora, MG, Brazil
b CICC, Department of Civil Engineering, University of Coimbra, 3030-788 Coimbra, Portugal

a r t i c l e i n f o

Article history:
Received 9 January 2012
Accepted 23 April 2012
Available online 17 May 2012

Keywords:
Acoustics
Elastodynamics
Boundary Element Method
Finite Element Method
Frequency domain analysis
Optimal relaxation parameters

a b s t r a c t

In this work, a coupled BEM–FEM strategy for the analysis of fluid–solid interaction problems in the fre-
quency domain is presented. Here, acoustic fluids are modelled by the BEM, whereas elastodynamic
solids are discretized by the FEM. The fluid–solid coupling is carried out by an optimized iterative proce-
dure. This coupling technique allows independent discretizations to be efficiently employed for both
Boundary and Finite Element Methods, without any requirement of matching nodes at the fluid/solid
common interfaces. Optimal relaxation parameters are computed, in order to ensure the convergence
of the iterative procedure, properly dealing with the frequency domain wave propagation ill-posed
problem.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Numerical analysis of fluid–solid coupled systems is a complex
task, requiring proper treatment of sub-domains in which different
physical phenomena are involved, as well as suitable numerical
modelling of wave propagation across arbitrary shaped interfaces.

In the present work, two distinct methods are considered in
order to numerically discretize the different sub-domains of the
fluid–solid coupled model, namely: the Boundary Element Method
(BEM) and the Finite Element Method (FEM). As it is well known,
the FEM is well suited for modelling inhomogeneous and aniso-
tropic solids, as well as for dealing with non-linear behaviour.
The BEM, on the other hand, is an appropriate numerical tool to
discretize acoustic fluids with infinite extension and/or high gradi-
ent concentrations. Thus, coupling boundary and finite element
procedures allows the combination of several advantages, which
is beneficial for fluid–solid interaction analysis.

Considering fluid–solid interaction modelling, most of the
BEM–FEM coupling algorithms [1–9] are formulated in a way that
a coupled system of equations is established, which afterwards has
to be solved using a standard direct solution scheme. Such a proce-
dure leads to several problems with respect to efficiency, accuracy
and flexibility. First, the coupled system of equations has a banded
symmetric structure only in the FEM part, while in the BEM part it

is non-symmetric and fully populated. Consequently, for its solu-
tion the optimized solvers usually used by the FEM cannot be em-
ployed anymore, which leads to rather expensive calculations with
respect to computer time. Second, fluid and solid media usually
have quite different physical properties, resulting in bad-condi-
tioned coupled matrices when standard coupling procedures are
considered. This may affect the accuracy of the methodology,
providing misleading results. Third, the standard coupling method-
ology does not allow independent discretization for each sub-do-
main of the model, requiring matching nodes at common
interfaces, which drastically affects the flexibility and versatility
of the technique.

In order to evade these drawbacks, iterative coupling proce-
dures have been recently presented, taking into account time
domain fluid–solid interacting analyses, considering boundary/fi-
nite element formulations [10–12]. As it has been reported, itera-
tive coupling approaches allow BEM and FEM sub-domains to be
analysed separately, leading to smaller and better-conditioned sys-
tems of equations (different solvers, suitable for each sub-domain,
may be employed). Moreover, a small number of iterations is re-
quired for the algorithm to converge and the matrices related to
the smaller governing systems of equations do not need to be trea-
ted (inverted, triangularized etc.) at each iterative step, providing
an efficient methodology. As a matter of fact, in time domain anal-
yses, iterative coupling procedures have been reported as effective
techniques taking into account several wave propagation prob-
lems, being not restricted to fluid–solid applications [13–15]. In
non-transient problems, iterative coupling methodologies have

0045-7949/$ - see front matter � 2012 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.compstruc.2012.04.010

⇑ Corresponding author.
E-mail addresses: delfim.soares@ufjf.edu.br (D. Soares Jr.), lgodinho@dec.uc.pt

(L. Godinho).

Computers and Structures 106–107 (2012) 68–80

Contents lists available at SciVerse ScienceDirect

Computers and Structures

journal homepage: www.elsevier .com/locate/compstruc

http://dx.doi.org/10.1016/j.compstruc.2012.04.010
mailto:delfim.soares@ufjf.edu.br
mailto:lgodinho@dec.uc.pt
http://dx.doi.org/10.1016/j.compstruc.2012.04.010
http://www.sciencedirect.com/science/journal/00457949
http://www.elsevier.com/locate/compstruc


also been reported as appropriate numerical tools, being several
works presented on the topic, mostly considering potential and
elastostatic problems [16–18].

In frequency domain analyses, although rarely, iterative coupling
procedures have been reported in the literature, mostly considering
acoustic–acoustic coupling [19,20]. As it has been reported,
frequency domain wave propagation analyses usually give rise to
ill-posed problems and, in these cases, the convergence of the itera-
tive coupling algorithm can be either too slow or unachievable. This
is the case in fluid–solid interacting models and, as discussed in this
work, convergence can be hardly achieved if no special procedure is
considered, especially if higher frequencies are focused. In order to
deal with this ill-posed problem and ensure convergence of the iter-
ative coupling algorithm, an optimal iterative procedure is adopted
here, with optimal relaxation parameters being computed at each
iterative step. As it is described along the paper, the introduction
of these optimal relaxation parameters allows the iterative coupling
technique to be very effective in the frequency domain, ensuring
convergence at a low number of iterative steps.

The paper is organized as follows: first, the governing equations
of the physical problem are presented; then, the Boundary and
Finite Element Methods are briefly discussed. In the sequence,
the iterative coupling technique is described, including the mathe-
matical derivation of the optimization methodology. At the end of
the paper, numerical applications are presented, illustrating the
accuracy, performance and potentialities of the proposed
procedures.

2. Governing equations

In this section, acoustic and elastic wave equations are briefly
presented. Each one of these wave propagation models is used to
mathematically describe different sub-domains of the global prob-
lem. At the end of the section, basic equations concerning the cou-
pling of acoustic and dynamic sub-domains are described.

2.1. Acoustic sub-domains

The acoustic scalar wave equation is given by:

ðjðXÞpðX; tÞ;iÞ;i � qðXÞ€pðX; tÞ � mðXÞ _pðX; tÞ þ SðX; tÞ ¼ 0 ð1Þ

where p(X, t) stands for hydrodynamic pressure distribution and
S(X, t) for body source terms. Inferior commas (indicial notation is
adopted) and over dots indicate partial space (p,i = o p/ o xi) and time
( _p ¼ @p=@t) derivatives, respectively. m(X) stands for the viscous
damping coefficient, q(X) is the mass density and j(X) is the bulk
modulus of the medium. In homogeneous media, m, q and j are con-
stant and the classical Helmholtz wave equation (frequency domain
analysis) can be written as:

pðX;xÞ;ii þ c2pðX;xÞ þ sðX;xÞ ¼ 0 ð2Þ

where c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2=c2 � ixm=j

p
stands for the complex wave number,

c ¼
ffiffiffiffiffiffiffiffiffi
j=q

p
is the wave propagation velocity and x is the frequency.

The boundary conditions of the problem are given by:

pðX;xÞ ¼ �pðX;xÞ for X 2 C1 ð3aÞ

qðX;xÞ ¼ p;jðX;xÞnjðXÞ ¼ �qðX;xÞ for X 2 C2 ð3bÞ

where the prescribed values are indicated by over bars and q(X,x)
represents the flux along the boundary whose unit outward normal
vector components are represented by nj(X). The boundary of the
model is denoted by C(C1 [ C2 = C and C1 \ C2 = 0, where C1

stands for the essential or Dirichlet boundary and C2 stands for
the natural or Neumann boundary) and the domain by X.

2.2. Elastodynamic sub-domains

The frequency domain elastic wave equation for homogenous
media is given by:

ðc2
d�c2

s ÞujðX;xÞ;jiþc2
s uiðX;xÞ;jjþðx2� ixmÞuiðX;xÞþbiðX;xÞ¼0 ð4Þ

where ui(X,x) and bi(X,x) stand for the displacement and the body
force distribution components, respectively. The notation for space
derivatives employed in Eq. (1) is once again adopted. In Eq. (4), cd is
the dilatational wave velocity and cs is the shear wave velocity, they
are given by: c2

d ¼ ðkþ 2lÞ=q and c2
s ¼ l=q, where q is the mass

density and k and l are the Lamé’s constants. v stands for viscous
damping related parameters. Eq. (4) can be obtained from the com-
bination of the following basic mechanical equations (proper to
model heterogeneous media):

rijðX;xÞ;j þ ðqðXÞx2 � ixqðXÞmðXÞÞuiðX;xÞ
þ qðXÞbiðX;xÞ ¼ 0 ð5aÞ

rijðX;xÞ ¼ kðXÞdijekkðX;xÞ þ 2lðXÞeijðX;xÞ ð5bÞ

eijðX;xÞ ¼
1
2
ðuiðX;xÞ;j þ ujðX;xÞ;iÞ ð5cÞ

where rij(X,x) and eij(X,x) are, respectively, stress and strain tensor
components and dij is the Kronecker delta (dij = 1, for i = j and dij = 0,
for i – j). Eq. (5a) is the momentum equilibrium equation; Eq. (5b)
represents the constitutive law of the linear elastic model and Eq.
(5c) stands for kinematical relations. The boundary conditions of
the elastodynamic problem are given by:

uiðX;xÞ ¼ �uiðX;xÞ for X 2 C1 ð6aÞ

siðX;xÞ ¼ rijðX;xÞnjðXÞ ¼ �siðX;xÞ for X 2 C2 ð6bÞ

where the prescribed values are indicated by over bars and si(X,x)
denotes the traction vector along the boundary (nj(X), as indicated
previously, stands for the components of the unit outward normal
vector).

2.3. Acoustic–elastodynamic interacting interfaces

On the acoustic–elastodynamic interface boundaries, the dy-
namic sub-domain normal (normal to the interface) displace-
ments (un(X,x)) are related to the acoustic sub-domain fluxes
(q(X,x)), and the acoustic sub-domain hydrodynamic pressures
(p(X,x)) are related to the dynamic sub-domain normal tractions
(sn(X,x)). These relations are expressed by the following
equations:

unðX;xÞ þ 1=ðqðXÞx2ÞqðX;xÞ ¼ 0 ð7aÞ

snðX;xÞ þ pðX;xÞ ¼ 0 ð7bÞ

where in Eqs. (7a) and (7b) the sign of the different sub-domain
outward normal directions is taken into account (outward normal
vectors on the same interface point are opposite for each sub-
domain). In Eq. (7a), q(X) is the mass density of the interacting
acoustic sub-domain medium.

3. Numerical modelling

Here, the acoustic fluid sub-domains are analyzed by the Bound-
ary Element Method, whereas the elastodynamic solid sub-domains
are discretized by the Finite Element Method. The employed bound-
ary and finite element formulations are briefly described in the
subsections that follow.
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