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• Lattice methods are used to study a player’s multi-dimensional best responses.
• Conditions guarantee that one component will be favored over another at an optimum.
• Helps analyze set of optimal solutions, especially in absence of closed-form solutions.
• Applications to multi-market monopoly and non-differential optimization are given.
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a b s t r a c t

This paper introduces ordinal conditions on payoff functions for models with multi-dimensional action
spaces which guarantee that the optimal action in one direction is greater than the optimal action in
another direction at an optimum. Examples are given to motivate these conditions.
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1. Introduction

Inmany situations, an agent’s interactionwith her environment
consists of multiple interdependent choices. For example, a con-
sumer chooses an optimal bundle by considering various units of
individual goods while satisfying a budget constraint. Likewise, a
firm operating in twomarkets chooses howmuch to charge in one
market while considering how this choice will affect profits in the
other market. In such cases, it is often of interest to knowwhen an
agent will find it optimal to take a higher action in one component
relative to another. That is, in the context of the firm, when can it
be guaranteed that the firm will choose to charge a higher price
in one market relative to the other market? This paper sheds light
on the behavioral underpinnings of such situations by establishing
order properties directly from an agent’s preferences and feasible
choices which guarantee that one component will be favored over
another.

Our analysis draws on the standard lattice techniques devel-
oped in Topkis (1998) which are used in the literature on games
of strategic complements (GSC) and substitutes (GSS),1 and have
been extended to consumer theory by Quah (2007). This litera-
ture allows for multi-dimensional action spaces to the extent that
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actions are regarded as single vectors under the product order.2
This allows one to make statements regarding the monotonicity of
the set of optimizers, as is standard in GSC and GSS, for instance.
However, lattice methods have not yet been extended to compare
the component-wise choices that comprise an optimal choice.
That is, while conditions exist under which each component of an
optimal choice can be guaranteed to be higher or lower in different
environments, the question as to whether one component will be
higher or lower than another in a particular environment remains
unanswered.

To this end, we introduce ordinal conditions on an agent’s
preferencewhich are sufficient to guarantee that one component is
favored relative to another at an optimal solution. In this sense, our
results are broadly related to Lazzati (2013), which derives similar
conditions that guarantee when one player will choose a higher
strategy than another in a Nash equilibrium. In particular, Lazzati
shows that in the context of a GSC, as long as some player i finds
it optimal to increase her strategy whenever another player j does,
then any fixed point of the extremal best response functions will
be such that player i plays a strategy as least as large as player j.
Similarly, we show that under some conditions, as long as choosing
a higher strategy in some component i is beneficialwhenever doing
so in another component j is, then the agent will favor component
i at an optimizer.

2 Recall that if (A, ⪰A) and (B, ⪰B) are two ordered sets, then the product order
⪰ on A × B is defined as,

(
a′, b′

)
⪰ (a, b) if a′

⪰A a and b′
⪰B b.
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This paper is organized as follows: Section 2 introduces the rele-
vant definitions and theoretical framework. Section 3 contains the
results of the paper, while providing several examples. Theorem 1
is the main result, and provides conditions on a payoff function
in the case that the constraint set is a lattice which guarantees
the agent will favor component over another at an optimizer.
Theorem 2 considers the case when the constraint may fail to be a
lattice, such as when a consumer is maximizing utility on a budget
set.

2. Theoretical framework

We will assume that a decision maker chooses an action from
Rn in order to maximize a payoff function π : Rn

→ R. Through-
out, we will make use of basic lattice concepts on R. We endow Rn

with the standard product order, so that for x, y ∈ Rn, x ≥ y iff
xi ≥ yi, for all i = 1, 2, . . . , n. A subset S ⊂ Rn is a sublattice if for
each x, y ∈ Rn, x ∨ y and x ∧ y are contained in S, where x ∨ y and
x ∧ y are the supremum and infimum of x and y, respectively, and
defined as

x ∨ y = (max{x1, y1},max{x2, y2}, . . . ,max{xn, yn})
x ∧ y = (min{x1, y1},min{x2, y2}, . . . ,min{xn, yn}).

Furthermore, S ⊂ Rn is a quasisublattice if for each x, y ∈ S, either
x ∨ y or x ∧ y is contained in S, and a subcomplete sublattice if
for each non-empty subset Z ⊂ S, the supremum and infimum of
Z , denoted ∨Z and ∧Z , respectively, exist and are contained in S.
Recall from Topkis (1998) that a sublattice S of Rn is subcomplete
if and only if S is compact.

We will assume that the decision maker chooses from a set of
feasible set of actions F ⊂ Rn. We will describe a typical element
a ∈ F as a = (ai, aj, a−i,j) when we want to emphasize compo-
nents i and j, where a−i,j represents the choices in all components
other than i and j. The decision maker’s set of optimal choices is
then written as

M = argmax
a∈F

π (a).

When π is quasisupermodular,3 then M is a sublattice of Rn if
F is a sublattice of Rn. Therefore, if π is continuous and F is
compact, themM is a compact sublattice, and hence a subcomplete
sublattice, which implies that M contains largest and smallest
elements ∨M and ∧M , respectively.

Wewill also need away to compare components in the decision
maker’s feasible action space F . To that end, we will make the
following definition:

Definition 1. Let F ⊂ Rn. We say that F favors component i to
j if, whenever a ∈ F with aj > ai, then ã ∈ F , where ãi = aj,
ãj = ai, and ãk = ak for all k ̸= i, j.

Note that F favoring i to j requires that for all feasible ordered
pairs such that the jth component is larger than the ith component,
then the ‘‘flipped pair’’ is also feasible. For example, consider a
budget set consisting of affordable goods 1 and 2, given by

F = {(a1, a2) ∈ R2
+

| p1a1 + p2a2 ≤ w}

where w is wealth, and p1 and p2 are the prices of goods 1 and
2, respectively. Suppose that a = (a1, a2) is affordable, where
a2 > a1. Then as long as p2 ≥ p1, we have that ã = (ã1, ã2) is
affordable, where ã1 = a2 and ã2 = a1, and hence F favors 1–2.
Note also that F is a quasisublattice but not a sublattice, since for
each a, a′

∈ F , a∧a′
∈ F , but this is not necessarily true for a∨a′.

In the next section, we will explore conditions on π both in the
case when F is a sublattice and then in the case when F is only
a quasisublattice which guarantees that component i is favored to
component j at an optimizer.

3 π is quasisupermodular if for each x, y ∈ Rn , π (y) ≥ π (x ∧ y) ⇒ π (x ∨ y) ≥

π (x) and π (y) > π (x ∧ y) ⇒ π (x ∨ y) > π (x).

3. Main results

We now explore conditions on the primitives of a model which
are sufficient to make a comparison between two components i
and j of an optimizer. We will assume throughout this section
that F favors component i to j, according to Definition 1. We first
investigate the case when, in addition, F is a sublattice. We then
relax this assumption by allowing for the possibility that F is a
quasisublattice, so that for each a, a′

∈ F , either a ∧ a′
∈ F or

a ∨ a′
∈ F , such as with the budget set considered in the previous

section. In each case, sufficient conditions which address both the
discrete case as well as the differential case are given.

3.1. Sublattice constraint sets

We first consider the case when F is a sublattice. From now on,
wewill describe a strategy profile a ∈ F as a = (ai, aj, a−i,j), so that
the first entry is the decisionmaker’s choice of action in component
i, the second is her choice in component j, and the third her choice
in all other components.

We now introduce the following properties, which are similar
in nature toQuah and Strulovici’s (2009) interval dominance order:

Definition 2. Suppose F favors component i to j, and let π : F →

R be a real-valued function. Then

1. π favors component i to j (of Type 1) if, for each a =

(z, z ′, a−i,j) ∈ F such that z ′ > z, we have that (z, z, a−i,j) ∈

F , and the following property holds:

π (z, z ′, a−i, j) ≥ π (z, x, a−i, j)
for all (z, x, a−i,j) ∈ F such that x in [z, z ′

]

⇒ π (z ′, z, a−i, j) ≥ π (z, z, a−i, j).4

2. π favors component i to j (of Type 2) if, for each a =

(z, z ′, a−i,j) ∈ F such that z ′ > z, we have that (z ′, z ′, a−i,j) ∈

F , and the following property holds:

π (z, z ′, a−i, j) ≥ π (x, z ′, a−i, j)
for all (x, z ′, a−i,j) ∈ F such that x in [z, z ′

]

⇒ π (z ′, z, a−i, j) ≥ π (z ′, z ′, a−i, j).

A condition which is sufficient for the Type 1 property can be
stated as follows: for each a = (z, z ′, a−i,j) ∈ F such that z ′ > z,
we have that (z, z, a−i,j) ∈ F , and the following property holds:

π (z, z ′, a−i, j) ≥ π (z, z, a−i, j) ⇒ π (z ′, z, a−i, j)
≥ π (z, z, a−i, j). (1)

An analogous sufficient condition holds for π favoring component
i to j (of Type 2). Definition 2 can be visualized in Fig. 1.

The Type 1 property is satisfied if a positive deviation in the
jth direction is beneficial (deviation 1 above), then a similar de-
viation in the ith direction (deviation 2 above) is beneficial as well.
Similarly, the Type 2 property is satisfied if a negative deviation in
the ith direction (deviation 1′ above) is beneficial, then a similar
deviation (deviation 2′) in the jth direction is beneficial.

The first main result is stated below, which shows that either
of the Type 1 or Type 2 properties being satisfied, along with the
weak sort of complementarity provided for by quasisupermodu-
larity, is enough to guarantee that an optimizing agent will favor
component i over component j.

4 Note that (z ′, z, a−i,j) ∈ F because (z, z ′, a−i,j) ∈ F and F favors component
i to j.



Download English Version:

https://daneshyari.com/en/article/5101386

Download Persian Version:

https://daneshyari.com/article/5101386

Daneshyari.com

https://daneshyari.com/en/article/5101386
https://daneshyari.com/article/5101386
https://daneshyari.com

