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a b s t r a c t

I present alternative constructions of gambles with greater risk. Rothschild and Stiglitz (1970) demon-
strate that gamble Y has greater risk than X when Y is equal in distribution to X + Z , where Z is noise.
Gambles called positive-upper-conditional-mean errors are introduced, and I show that Y has greater risk
than X when Z is a PUCME and is not noise. Simple examples demonstrate that the set of PUCMEs is strictly
greater than the set of gambles that are noise.
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0. Introduction

In their fundamental work Rothschild and Stiglitz (RS, 1970)
characterize what it means to say that a gamble (random wealth
level) Y has greater risk than X . I extend their work, providing new
and alternative characterizations of increasing risk.

RS give a cycle of proofs to demonstrate the equivalence of
three statements about the gambles X and Y , and their cumulative
distribution functions F and G. Let u be an investor’s utility
function, and write Y =

d
X + Z to say that Y is equal in distribution

to X+Z . The equivalent statements are: (i) Y differs from X by noise,
which means that a gamble Z exists such that Y =

d
X + Z and that

satisfies

E (Z |X) = 0; (1)

(ii) every risk averter prefers X to Y , which formally requires

E (u (X)) ≥ E (u (Y )) (2)

for all investors with concave functions u, and I write X & Y when
this condition is satisfied; and (iii) G has more weight in the tails
than F , which requires that 1

0
S (v) dv = 0 (3)

and x

0
S (v) dv ≥ 0, x ∈ [0, 1] (4)
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are satisfied, where S = G − F is the difference in the distribution
functions.1

Each of these alternatives characterizes increasing risk among
gambles. Because RS do not require a parametric family of dis-
tributions, their work has been recognized and applied in many
areas of research, including: investment choice (Hartman, 1972;
Gollier, 2011), search theory (Rothschild, 1974; Nishimura and
Ozaki, 2004), the theory of capital structure (Merton, 1974), the
economics of capital requirements (Blum, 1999), and decision the-
ory (Baker, 2006).

This paper reconsiders condition (i) regarding noise. It is a fact,
recognized by RS, that there exist gambles Z that satisfy Y =

d
X + Z

and X & Y , but that do not satisfy (1). In other words, there is a set
of gambles that includes but is strictly larger than noise such that
Y has greater risk than X . I characterize a subset of this larger set
of gambles in this paper.

A positive-upper-conditional-mean error (PUCME) is defined by

E (Z) = 0, (5)

and

E (Z |X ≥ x) ≥ 0, x ∈ [0, 1] . (6)

If Y =
d
X + Z and Z satisfies (5), the means of X and Y are equal, so

it is sensible to say that Z is an error. If Z also satisfies (6) then its
upper conditional mean is non-negative, and the addition of Z to X

1 In the formal analysis, X , Y and Z have ranges [0, 1], [0, 1] and [−1, 1],
respectively, and u is bounded and concave on [0, 1]. In the example in Section 2,
the common range of the gambles is the real line.
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shifts weight to the tails of the distribution so that all risk averters
prefer X to Y . Values of Z for large X tend to be positive, while
those for small X tend to be negative when (5) and (6) are satisfied.
Condition (1) implies condition (6), so a gamble that is noise is also
a PUCME.2 However, there are PUCMEs that are not noise.

If Y =
d
X + Z and Z is a PUCME, I say Y differs from X by a PUCME.

The following theorem is the principal result of this paper.

Theorem 1 (Sufficiency). If gamble Y differs from X by a PUCME then
X & Y . (Necessity) If X & Y then Y differs from X by a PUCME.

RS demonstrate that if (a) Y differs from X by a PUCME and (b) Z
is noise, X & Y . The statement of Sufficiency says that the condition
(b) can be eliminated. A proof of Necessity is trivial. RS show that
if X & Y then Y differs from X by noise. Because any gamble that is
noise is also a PUCME, the result follows.

These facts raise questions regarding uniqueness. Is it always
true that gambles Z exist that are PUCMEs but that are not noise?
That is, in what settings do gambles X and Y exist such that the
only PUCME Z for which Y =

d
X + Z is noise? A partial answer

to these questions is immediately clear when X is constant. If
Pr (X = x) = 1 then E (Z) = 0 only if E (Z |X = x) = 0 and Z
is noise; there is no other PUCME that satisfies (5). However, two
examples demonstrate that noise is not the unique PUCME when
X is random.

In the first example,X andY are normally distributedwith equal
means and unequal variances, and X & Y as a result. A parameter-
ized family of gambles Z is chosen such that Y =

d
X + Z and the

conditions (5) and (6) are satisfied by each Z . One of these gambles
satisfies (1), but with measure one in the parameter space, condi-
tion (1) does not hold, demonstrating a multiplicity of non-noise
PUCMEs. In a second example, X and Y are discrete gambles such
that X & Y . As in the first example, there is a family of gambles Z
such that Y =

d
X + Z , and only one member of the family is noise.

This example leads to the conclusion that, within the universe of
discrete gambles, noise is the unique PUCME only when X is con-
stant.

Inmany economic studies, includingmany of those cited above,
individuals prefer more to less wealth. I revise the theory to
consider this case, following Hadar and Russell (1969), who say
that X stochastically dominates Y (in second order) if (2) holds for
all increasing and concave u. In the revision, I show that if Y =

d
X+Z

and Z satisfies both (6) and

E (Z) ≤ 0, (7)

then X stochastically dominates Y . Huang and Litzenberger (1988)
demonstrate that

E (Z |X) ≤ 0 (8)

is a sufficient condition for stochastic dominance. However, there
are many Z that satisfy (6) and (7) that do not satisfy (8).

In sum, the full character of the gamble Z is indeterminatewhen
X + Z is equal in distribution to Y and either: Y has greater risk
than X; or X stochastically dominates Y . In empirical work, if we
observe that all risk averters prefer gamble X to X + Z , we should
not conclude from that observation alone that Z is noise. Similarly,
this paper demonstrates a variety of ways to construct in theory
and experimental work a gamble Y that stochastically dominates
gamble X .

2 Using (1) and the law of iterated expectations, E (Z |X ≤ x) =

E (E (Z |X) |X ≤ x) = 0 when Z is noise.

Section 1 presents the proof of the Sufficiency half of Theorem1,
as well as a corollary that describes the case of stochastic
dominance. Sections 2 and 3 present the examples. Section 4 offers
final remarks, including a brief example of the theorem applied in
a behavioral experiment. Appendix describes an extension of the
example in Section 3.

1. Adding a PUCME increases risk

Here the gambles X , Y and Z may follow discrete, continuous
or mixed distributions, while the utility function u is bounded and
concave on [0, 1]. Let M (X) = E (Z |X). Using the law of iterated
expectations, the conditions (5) and (6) that define a PUCME are
equivalent to

E (M (X)) = 0, (9)

and

E (M (X) |X ≥ x) ≥ 0, x ∈ [0, 1] , (10)

respectively. The Sufficiency part of Theorem 1 is alternatively
stated as

Theorem 1∗ (Sufficiency). If Y =
d
X + Z and gamble Z satisfies

conditions (9) and (10), where M (X) = E (Z |X), then X & Y .

Proof of Theorem 1∗. Wemust demonstrate E(u(X)−u(X+Z)) ≥

0. To do so, let

an,i


, i = 0, . . . , n, be a sequence of increasingly

finer partitions of [0, 1] indexed by n. For each n, n = 1, 2, . . . ,
let an,0 = 0, an,n = 1, and an,i < an,i+1, i = 0, . . . , n − 1,
and let the norms of the partitions converge to zero, which means
limn→∞ maxi


an,i+1 − an,i


= 0. One such sequence of partitions,

for example, has elements an,0 = 0 and an,i = 2i−n otherwise for
all n.

For each n, let un be the continuous and piece-wise linear
function constructed from the secants of u with knots defined by
the elements of the partition


an,i


. For each n, this function is

un (x) = u

an,i


+ κn (x)


x − an,i


, x ∈


an,i, an,i+1


,

where

κn (x) =
u


an,i+1


− u


an,i


an,i+1 − an,i

, x ∈

an,i, an,i+1


,

for each i = 0, . . . , n − 1, and we set un (1) = u (1) and κn (1) =

κn

an,n−1


. Because u is concave, the slopes of the secants satisfy

κn (x) ≥ κn (y) , x ≤ y,

and each un is a concave function as a result. For this reason,

un (x + z) ≤ un (x) + κn (x) z, (11)

for all x and x + z in the interval [0, 1]. Furthermore, the un
converges uniformly to u from below. For each n, un (x) ≤ u (x),
x ∈ [0, 1], and for each ϵ > 0 a nϵ > 0 exists such that

sup
x∈[0,1]

u (x) − un (x) < ϵ, n > nϵ .

As a consequence,

E (u (X) − u (X + Z)) = lim
n→∞

E (un (X) − un (X + Z)) .

To complete the proof, we demonstrate that the limit on the
right is non-negative. We have

E (un (X) − un (X + Z))

= E (un (X) + κn (X) Z − un (X + Z)) − E (κn (X) Z)

≥ −E (κn (X)M (X))
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