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a b s t r a c t

We consider revenue-optimal mechanism design for the case with one buyer and two items, when the
buyer’s valuations are independent and additive. We obtain two sets of structural results of the optimal
mechanisms, which can be summarized in one conclusion: under certain distributional conditions, the
optimal mechanisms have simple menus.

The first set of results states that, under a condition that requires that the types are concentrated
on lower values, the optimal menu can be sorted in ascending order. Applying the theorem, we derive
a revenue-monotonicity theorem which states that stochastically dominated distributions yield less
revenue.

The second set of results states that, under certain conditions which require that types are distributed
more evenly or are concentrated on higher values, the optimal mechanisms have a few menu items. Our
first result states that, for certain such distributions, the optimalmenu contains atmost 4menu items. The
condition admits power density functions. Our second result works for a weaker condition, under which
the optimal menu contains at most 6 menu items. Our last result in this set works for the unit-demand
setting, it states for uniform distributions, the optimal menu contains at most 5 items.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Revenue-optimal mechanism design has been a topic of
intensive research over the past thirty years. The problem is, for
a seller, to design a revenue-maximizing mechanism for selling k
items to n buyers, given the buyers’ distributions of valuations but
not the actual values themselves. A special case of the problem,
where there is only one item (k = 1) and buyers have independent
valuation distributions, has been resolved by Myerson’s seminal
work (Myerson, 1981). Myerson’s approach has turned out to be
very general and has been applied to a number of similar settings,
such as Maskin et al. (1989), Jehiel et al. (1996), Levin (1997),
Ledyard (2007) and Deng and Pekeč (2011).

However, this line of work is limited because it does not deepen
the understanding of the cases with more than one items (k > 1).
In fact, even for the simplest multi-item case, where there are two
independent items (k = 2) and one buyer (n = 1) with additive
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valuations, a direct characterization of the optimal mechanism is
still open for general continuous valuation distributions.

For the special case of selling multiple, independent items
to a single buyer, significant progress has been made in this
particular setting lately. Hart and Nisan (2012) investigate the
two simplest forms of auctions: selling the two items separately
and selling them as a bundle. They prove that selling separately
obtains at least one half of the optimal revenue while bundling
always returns at least one half of the separate sale revenue. Hart
and Nisan (2013) investigate how the ‘‘menu size’’ of an auction
can affect the revenue and show that the revenue of any finite
menu-sized auction can be arbitrarily far from the optimal (this
implies that restricting attention to deterministic auctions, which
have an finite-sizedmenu, indeed compromises generality). Carrol
(2015) considers a robust version of the optimalmechanismdesign
problem, where there is one buyer and multiple additive items
and the seller only knows the marginal valuation distributions of
each item but not the joint distribution. He shows that the worst-
case (with respect to any joint distribution that is consistent with
themarginal distributions) optimalmechanism is to separately sell
each item via a Myerson auction.

With respect to the literature of exactly optimal mechanism
design, Thanassoulis (2004) provides examples where the optimal
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mechanism requires randomized allocations. Pycia (2006) further
shows that in general, the optimal mechanism is randomized.
Manelli and Vincent (2006, 2007) and Pavlov (2011a,b) obtain
optimal mechanisms for several specific distributions (such as
when both items are distributed according to the uniform [0, 1]
distribution). Daskalakis et al. (2013) and Daskalakis et al. (2015)
study this problem from the perspective of duality theory. First
they formulate the problem as a maximization problem over a
convex domain and then consider its dual in the form of an
optimal transportation problem. Their main result is a strong
duality theorem, by applying the duality theorem, they can certify
optimality by providing a complementary solution to the dual
problem. Examples that illustrate their techniques include the
optimality of an infinite-menu mechanism for two independent
beta distributions, as well as optimality conditions for the grand
bundling. Menicucci et al. (2015) prove sufficient conditions under
which bundling is optimal for one buyer and two additive items.
We will discuss the connection of this paper to our results in
Section 5. Haghpanah and Hartline (2015) identify the sufficient
and necessary conditions (include the independent uniform case)
under which for one unit-demand buyer with two items, the
optimalmechanism is to post a price for each item.Wewill discuss
the connection of this paper to our result in the unit-demand
section.

In the present paper, we study the case with one buyer and two
independent items, in hope of a direct characterization of optimal
mechanisms. We obtain several interesting structural results. Our
conclusion is that, under some distributional conditions, optimal
mechanisms have ‘‘simple’’ menus. We summarize our results into
two parts, based on the conditions under which the results hold,
as well as the different interpretations of ‘‘simplicity’’.

For ease of presentation, we will use the following notation: for
a density function h, the power rate of h is PR(h(x)) =

xh′(x)
h(x) .

• Part I (Section 4). If the density functions f1 and f2 satisfy
PR(f1(x)) + PR(f2(y)) ≤ −3, ∀x, y, a condition that roughly
states that the types are concentrated on lower values, the op-
timal mechanism has a monotone menu – sort the menu items
in ascending order of payments, the allocation probabilities of
both items increase simultaneously – a desirable property that
fails to hold in general (cf. Hart and Reny, 2012). Our result com-
plements Hart and Reny’s observation and has two important
implications.
1. Hart and Nisan (2012, Theorem 28). Hart and Nisan show

that, if the two items are further identically distributed (i.e.,
f1 = f2), the bundling auction is optimal. Our result sub-
sumes this theorem as a corollary.

2. A revenuemonotonicity theorem: Based on themenumono-
tonicity theorem, we are able to prove that, stochastically
dominated distributions yield less revenue, another desir-
able property that fails to hold in general.
Our proof is constructive and geometrical in the sense that

we fix the buyer utility function on certain boundary lines of the
valuation domain (according to the revenue formula, the seller’s
revenue is not increasing in the buyer’s utility on these bound-
ary lines, thus hard to analyze, so we fix this part of the util-
ity function) and construct the remainder of the optimal utility
function (for the remainder part of the valuation domain, the
revenue is increasing in the buyer’s utility, according to the rev-
enue formula). For several recent applications of the geometri-
cal approach, seeWang and Tang (2015), Tang andWang (2016)
and Tang et al. (2016).

• Part II. (Section 5). If the density functions f1 and f2 satisfy
PR(f1(x)) + PR(f2(y)) ≥ −3 ∀x, y, a condition which roughly
asserts that the types are distributed more evenly than the case
described in Part I or are concentrated on higher values, the op-
timal mechanisms contain few menu items. In particular,

1. If both PR(f1(x)) and PR(f2(y)) are constants, the optimal
mechanism contains at most 4 menu items. The result is
tight. The constant power rate is satisfied by power functions
h(x) = axb and the uniform distribution as a special case.
This is consistent with earlier results for uniform distribu-
tions (Manelli and Vincent, 2006; Pavlov, 2011a): the opti-
mal mechanisms indeed contain four menu items.

2. – If PR(f1(x)) + PR(f2(y)) = −3 ∀x, y, the optimal mecha-
nism contains at most 3 menu items.

– If −2 ≤ PR(f1(x)) ≤ yAf2(yA) − 2 and − 2 ≤ PR(f2(y)) ≤

xAf1(xA) − 2, the optimal mechanism contains 3 menu
items. Here xA and yA are the lowest possible valuations
for items 1 and 2 respectively, Consequently, under either
condition, selling the two items as a bundle yields at least
half of the optimal revenue.

3. If we relax the condition to the case where PR(f (x)) is mono-
tonically increasing, a fairly general condition satisfied by
many distributions, the optimal mechanism is still simple in
that it contains atmost 6menu items. This condition includes
density functions such as exponential density and any den-
sity function whose Taylor series coefficients are nonnega-
tive.

4. Our last result requires that the buyer demands at most one
item. Under this condition, for uniformdensities, the optimal
mechanism contains at most 5menu items. The result is also
tight.
These results are in sharp contrast to Hart and Nisan’s re-

cent result that there is somedistributionwhere a finite number
of menu items cannot guarantee any fraction of revenue (Hart
and Nisan, 2013). Here we show that, for several wide classes
of distributions, the optimal mechanisms have finite and sim-
ple menus. The conditions in these results are necessary; when
the conditions do not hold, Daskalakis et al. (2013, 2015) show
that, for a settingwith two beta distributions, the optimalmenu
must consist of a continuum of menu items.

Our proofs for this part are based on Pavlov’s characteriza-
tion and geometrical analysis of how the revenue changes as a
function of the utility of the buyer. The intuition is as follows:
the ‘‘extreme points’’ in the set of convex utility functions on
the boundary values are piecewise linear functions. By standard
geometrical arguments, one can further show that these piece-
wise linear functions only contain a small number of pieces.
Since the utility on inner values is linearly related to that on
the boundary (because the gradient of the utility function on
one direction must be 1 according to Pavlov, 2011a,b), it must
be the case that the utility function on the inner points contains
only a few linear pieces as well. In other words, the mechanism
only contains a few menu items.

In the optimal auction design problem, bidders are utility
maximizers. By incentive compatibility, the equilibrium utility
as a function of the valuation must be convex. The hardness of
optimal auction design is to maximize the seller’s revenue under
the convex constraints. As one can expect, a common approach is
to relax the convex constraint and compute the optimal solution
of the relaxed problem. If one is lucky in that the relaxed optimal
solution happens to be convex, an optimal solution is found.
However this method fails sometimes. As mentioned, Daskalakis
et al. (2015) transform the optimal mechanism design to the
optimal transportation problem and give a procedure to certify
the optimality of the auction. However, difficulties still exist when
constructing the optimal solution to the transportation problem.

In parallel with this approach, we adjust the utility function
while maintaining the convex constraints. We start from any
convex utility, then try to increase or decrease the utility on every
point and maintain the convex property in each small region.
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