
Optimum cost design of controlled cable stayed footbridges

F. Ferreira a,⇑, L. Simões b

a Faculty of Engineering, University of Oporto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal
b Department of Civil Engineering, University of Coimbra, Portugal

a r t i c l e i n f o

Article history:
Received 26 August 2011
Accepted 30 April 2012
Available online 31 May 2012

Keywords:
Cable stayed
Structural control
Multi-objective optimization
Integrated design
Footbridges

a b s t r a c t

Traditionally, structures and control devices are designed separately. Here an integrated approach is pro-
posed and applied to find the least cost solution of a passive and active cable stayed footbridge. The opti-
mization process reduces simultaneously cost, stress, acceleration and displacement. By using an
entropy-based procedure a Pareto solution is obtained by unconstrained scalar function minimization
and an efficient polynomial convergence algorithm is employed. The designed controller is compared
with an active linear quadratic regulator (LQR). Numerical simulations show that both passive and active
optimum designs are efficient, with different geometry, mass distribution and cost (22% higher in the
passive design).

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

There is a growing interest in applying control to protect civil
engineering structures. The use of control devices in cable stayed
bridges has been studied in order to mitigate the effects of wind
and seismic events. The flexibility of pedestrian cable stayed
bridges results in an amplified response when subjected to dy-
namic loads. Reducing this problem is of vital importance for safety
and serviceability [1]. Many control algorithms and devices have
been studied to protect structures against seismic events. Semi-
active systems are also an attractive alternative for vibration
reduction due to its mechanical simplicity, low power require-
ments and large control force capacity [20]. Benchmark structural
control problems for cable-stayed bridges have allowed research-
ers to compare the efficiency of control algorithms and devices
[5]. Linear quadratic regulator control design (LQR) has been shown
efficient in reducing the dynamic response of the structure [4,11].
Other control algorithms such as the H1 [22] and the optimal
polynomial controller [10] have also shown to be effective for
structural control. Magaña et al. [13] proposed an innovative
control scheme which uses active cables in the bridge. The control
is decentralized, meaning that each active cable uses only local
information (displacement and velocity at anchorage point) to
determine actuation.

The optimization of cable-stayed bridges can be stated as the
minimization of structural cost or volume and the maximum stres-
ses, displacements and deflections throughout the structure [9].

Negrão and Simões [18] proposed a method to optimally design
three dimensional cable-stayed bridges. Erection stages and seis-
mic events were considered in the optimization by both a spectral
and time-history-based procedure. Deterministic optimization was
enhanced by reliability performance and formulated within the
probabilistic framework of reliability based design [19].

The use of control allows the engineer to use different structural
systems, this way an integrated structural/control design is viewed
as a necessary evolution.

Messac [15] implemented physical programming to the opti-
mum control of a spacecraft example. The design variables were
parameters which determine geometric properties of the structure
such as mass, damping and stiffness distribution.

Tzan and Pantelides [21] presented a methodology to optimally
design an active frame subject to seismic excitation, the objective
being minimize the structural volume with constraints of story
drift and stresses. Khot [12] proposed an approach to optimally de-
sign integrated space systems using multi-objective optimization
with goals of minimum volume, control force and time to suppress
oscillations. In 2008 Cimellaro et al. [2] illustrated a two-stage
optimization procedure for designing active steel frames. In 2009
Cimellaro et al. [3] extended their work to account for inelastic
structures. The technique proved efficient in determining the opti-
mal control/structural system. Ferreira and Simões [8] applied an
integrated optimum control design to a three span cable-stayed
subject to seismic events.

Steel footbridges are usually very flexible structures this, added
to their low inherent damping, amplifies their response under dy-
namic loading. SETRA [16] published a comprehensive guide for
the design of such structures highlighting the importance of their
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dynamic properties. In this context the authors are proposing here
the integrated design problem of a footbridge with an active ten-
don and compare its efficiency with a passive design. The steel
footbridge presented is intended to guarantee serviceability along
running events such as a marathon. Only vertical vibrations are ac-
counted so a two dimensional model is used. The objective is to
find two different optimum solutions associated with passive and
active bridges. The current European regulation, EC0 [6] and EC1
Part 1–2 [7] are employed.

The design technique uses a multi-objective optimization for-
mat with goal of minimum cost, stresses, deflections, accelerations
and a Pareto solution is sought. An entropy-based methodology is
used to determine the minimax solution by the minimization of a
convex scalar function.

The controller designed using the optimization algorithm is
compared to a LQR formulation.

2. Optimization strategy

2.1. Minimax objective function

The objective of this work is to find the least cost solution that
guarantees safety and serviceability. The problem has one objec-
tive function, which is the construction cost. Considering DCi as
the ith design criteria, the optimization problem can be formulated
as:

Minimize cost

St DCi � DCimax or
DCi

DCimax
� 1 � 0 ð1Þ

The goal is to find the design variables (DV) that define the
optimum cost structure. There are a huge number of restrictions
involved in the problem, arising from the static and dynamic
time-history analysis. Finding the active constraints in each
iteration reveals to be a very time consuming method in such cases
[8,18]. Instead the problem is transformed in an equivalent
minimax optimization problem (Eq. (2)).

min
DV

max
i

DCi

DCimax
� 1;

Cost
Cref
� 1

� �
ð2Þ

In minimization problems, one solution vector is said to be Par-
eto optimal if no other feasible vector decrease one objective func-
tion without increasing at least another one. The optimum vector
usually exists in practical terms and is not unique [17]. The mini-
max problem (Eq. (2)) is equivalent to the optimization problem
(Eq. (1)) as long as the reference cost (Cref) is continuously updated
throughout the optimization process. The minimax problem is dis-
continuous and non-differentiable, properties that difficult its
numerical solution by direct means.

In each iteration the cost and all the DC are determined along
with their sensitivity to the DV. The sensitivity analysis was per-
formed using the finite difference method, this way no direct pro-
gramming of stiffness and mass matrix partial derivates were
needed.

After the cost, the DC and respective sensitivities have been
determined, the solution procedure adopted was to cast the objec-
tives according to the minimum entropy principle. The problem
was formulated as a Kreisselmeyer–Stainhauser scalar function F
[17]. This form leads to a convex approximation of the objective
and constraint boundaries (Eq. (3)). Accuracy increases with q.

Minimize F ¼ 1
q

ln
XNDC

i¼1

e
q DCi �vð Þþ

XNDV

j¼1

@DCið�vÞ
@�vj

�v j

� �
�1

" #2
66664

3
77775 ð3Þ

Legend:

NDC Number of design criteria.
NDV Number of design variables.
DCi(v) Design criteria number i.
vj Design variable number j.
Dvj Design variable number j increment.

The strategy adopted was to solve an iterative sequence of ex-
plicit approximation problems. Solving for particular numerical
values of the objectives forms one iteration of the complete solu-
tion of problem. The solution vector of such iteration represents
a new design which needs to be analyzed and checked for safety
and serviceability. Iterations continue until changes in the design
variables become small. The problem is solved by the steepest des-
cent algorithm as it proved to converge faster (Eq. (4)).

�v iþ1 ¼ �v i � k�rFi ð4Þ

where rFi stands for the gradient of F. This way the optimization
problem with multiple design variables is transformed into one de-
sign variable (k) optimization.

3. Time history analysis and controllers

3.1. Time history analysis

The direct analytical integration method was considered in the
step by step procedure, due to its drastic reduction of computa-
tional effort. After computing the mass, damping and stiffness ma-
trixes and the force vector (M, C, K and f respectively), the
evaluation of the structural response (u) needs solving the dy-
namic equilibrium equation (Eq. (5)).

M€uþ C _uþ Ku ¼ f ð5Þ

The dynamic equation has an analytical solution [14]. Considering
the state space vector x defined as (Eq. (6)):

x ¼
u
_u

� �
ð6Þ

The 2nd order equation (Eq. (5)) is replaced by a 1st order (Eq. (7)).

_x ¼ Axþ Bf ð7Þ

The matrixes A and B are defined by Eqs. (8) and (9) respectively.

A ¼
0 I

�M�1K �M�1C

� �
ð8Þ

B ¼
0

�M�1

� �
ð9Þ

Eq. (10) gives the analytical solution to Eq. (7) for a given time step
Dt.

xðt þ DtÞ ¼ eDtAxðtÞ þ
Z tþDt

t
e½ðtþtÞ�f�ABf ðfÞdf ð10Þ

Assuming the forces in the structure vary linearly, dynamic time
history analysis can be done using the following equation (Eq. (11)).

xðt þ DtÞ ¼ KbxðtÞ þ Kf Bf ðtÞ þ KDf B½f t þ Dtð Þ � f tð Þ� ð11Þ

Eq. (11) uses information on the current time step, and deter-
mines the state in the next time step. The dynamic matrixes Kb,
Kf and KDf are determined using Eqs. (12)–(14). Where I represents
the identity matrix.

Kb ¼ eDtA ð12Þ
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