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a b s t r a c t

In this paper, it is shown that, for planar systems formed from linear-elastic bodies in non-penetrative
contact with Coulomb friction, the limit load can be approximated efficiently by the limit loads corre-
sponding to a sequence of contact problems with given friction, via a finite element fixed-point approach.
For the auxiliary problem with given friction, a splitting of this problem into two subproblems, one with
prescribed normal contact stresses and given friction and one with prescribed tangential contact stresses,
is employed. Numerical results for masonry block structures subjected to in-plane loading illustrate the
predictive capabilities of this approach.

� 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Contact problems with friction are central to the modelling and
analysis of many structural systems (e.g. in architecture and con-
structions, biomechanics, automotive and aerospace engineering,
robotics, computer graphics, etc.) and the numerical treatment of
these problems poses many theoretical and computational chal-
lenges (see e.g. [32,48,1]). The complexity of contact problems
modelling structural systems is generally associated with the
detection of contacts and openings and the resolution of non-linear
equations for contact (see [12,20,27,33,22,13]). However, a whole
new level of complexity arises when a system is subjected to load-
ing that can lead to loss of equilibrium and the corresponding limit
load needs to be evaluated as well. In this case, the problem is, on
the one hand, to determine the limit value of the load, such that the
system acted upon by loads smaller than the limit load will not col-
lapse (the static principle), and on the other hand, to predict a pos-
sible collapse mode for the structure under the limit load (the
kinematic principle) (see [8,23,25,42,47]).

For systems formed from linear-elastic bodies in mutual
non-penetrative contact with Tresca (given) friction, the limiting
tangential force associated with sliding at the contact zone is
independent of the normal compressive force, and the static and
kinematic principles of limit load analysis take the form of two
dual problems in infinite dimensional convex programming (see
[8, Section 6.4]). For planar systems, these problems are analysed

in Mihai and Ainsworth [41], where a unified theory for the exis-
tence of a solution is established, in the framework of variational
inequalities, and two finite element approaches for the computa-
tion of guaranteed lower and upper bounds on the unique limit
load are devised. In the first approach, the static limit load problem
reduces to a linear program (LP) in the divergence-free space, from
which a lower (safe) bound for the limit load and the correspond-
ing stress distribution are obtained. In the second approach, the
kinematic limit load problem is expressed as a mixed linear
complementarity problem (MLCP) from which an upper (unsafe)
bound for the limit load and the collapse mode are determined.

In contact mechanics, the challenge is to apply models for
which parameters can be easily identified from experiments and
which lend themselves to a reliable numerical treatment. The con-
tact model with given friction may be appropriate for certain appli-
cations (see e.g. [19,39]) and can be represented as a linear or
convex programming problem, for which robust and efficient solu-
tion procedures are available (see e.g. [17,49,44]). However, for
many practical problems, the Coulomb condition that a tangential
force less than a critical value proportional to the normal compres-
sive force will not cause sliding (cf. [9,24]) is more realistic. Unfor-
tunately, the Coulomb friction condition introduces non-linearity
and non-convexity in the optimization problem, which render it
very difficult to solve.

The limit load analysis of elasto-plastic systems with Coulomb
friction was considered, perhaps for the first time, in Drucker
[11], where analytical lower and upper bounds for the limit load
were established by approximating the Coulomb friction model
by models with given friction. As a result, a lower bound was
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given by the limit load for frictionless contact, while an upper
bound was found by solving the limit load problem for contact
without relative sliding at interfaces. The first numerical approach
for the limit load problem of multibody systems formulated as an
LP was introduced in Livesley [34], where a computational proce-
dure previously developed for the limit load analysis of plastic
frames was extended to the analysis of rigid-block systems with
frictional contact interfaces. More recently, numerical procedures
for the limit load analysis of systems formed from rigid-blocks in
frictional contact were proposed in Fishwick [16], Baggio and Tro-
valusci [6], Ferris and Tin-Loi [15], Gilbert et al. [18]. For large-
scale systems, in [15], the limit load problem for discrete models
with non-associative friction is expressed as a mathematical pro-
gram with equilibrium constraints (MPEC) (for applications, see
also Orduña and Lorenço [45]), while in [18], this limit load prob-
lem is approximated by a sequence of problems with successively
modified associative friction. Extensions to finite element models
of systems formed from linear-elastic blocks were proposed in
Maier and Nappi [38] and Boothby and Brown [7]. Recently, an
efficient finite element procedure for the limit load assessment
of elasto-plastic structures with general piecewise linear yield
conditions, in discrete framework, is discussed in Ardito et al. [5].

While the study of discrete limit load problems is motivated
by the rapid development of robust optimization techniques on
which it strongly relies, considerably less attention has been paid
to the associated continuous problems. The main objective of this
paper is to extend the analysis presented in [41] to planar sys-
tems with Coulomb friction, by combining the limit load princi-
ples with well-known techniques for the representation of
multibody systems with contact constraints. At continuous level,
for a system of linear-elastic bodies in non-penetrative contact
with Coulomb friction, when the coefficient of friction is suffi-
ciently small, an equilibrium solution can be obtained by a
fixed-point approach involving contact problems with given fric-
tion (cf. [43,30,31]). For an effective numerical realisation of the
auxiliary problem with given friction, at each fixed-point itera-
tion, a splitting of this problem into two subproblems, one with
prescribed normal contact stresses and given friction and one
with prescribed tangential contact stresses, can be employed
(cf. [46,21,10]). The fixed-point approach combined with the
splitting method has been successfully applied to the simulation
of large-scale multibody structures in Refs. [3,4,40]. In this paper,
the fixed-point iteration and the splitting procedure are extended
to the numerical limit load analysis of multibody systems with
Coulomb friction. In Section 2, the limit load problem for multi-
body systems with frictional contact constraints is introduced at
infinite dimensional level. In Section 3, the fixed-point algorithm
for the numerical solution of the limit load problem for systems
with Coulomb friction, discretised by the finite element method,
is described and analysed. This is coupled, in Section 4, with a
splitting procedure for the auxiliary problem with given friction.
The resulting algorithm is presented in an algebraic form suitable
for computer implementation in Section 5. In Section 6, numeri-
cal results for masonry block structures subjected to in-plane
loading illustrate the predictive capabilities of the fixed-point ap-
proach. Conclusions are drawn in Section 7. Additional technical
details are provided in the two appendices at the end of the
paper.

2. The limit load problem

Let X ¼ X1 [ � � � [Xms � R2, ms P 2, represent the domain occu-
pied by a system formed from linear elastic bodies in non-penetra-
tive contact with friction, where every Xs is a simply connected
polygonal domain filled by a single body, s = 1, . . . ,ms. The global
boundary C ¼ @X1 [ � � � [ @Xms is partitioned as C = CC [ CE, where

CC – ; is the potential contact zone consisting of the interfaces be-
tween bodies, and CE = CnCC is the exterior part of the boundary.

2.1. Boundary conditions

The exterior boundary is partitioned as CE = CD [ CS [CB,
where:

� On CD the system is fixed:

uN ¼ 0 and uT ¼ 0:

� On CS a simple support is assumed:

uN ¼ 0 and rT ¼ 0:

� On CB – ; boundary tractions are acting:

rN ¼ FB
N and rT ¼ FB

T :

2.2. Contact conditions

On the contact zone CC:

� The non-penetrative contact is modelled by the conditions:

½uN �P 0; rN 6 0; ½uN �rN ¼ 0: ð2:1Þ

� The frictional contact is governed by the classical law:

½uT � ¼ 0 ) jrT j 6 FG;

½uT �–0 ) rT ¼ �FG
½uT �
j½uT �j

: ð2:2Þ

In the above relations, the indices N and T indicate the normal
and tangential directions, respectively, which are given an arbi-
trarily unique value on every common edge between two bodies,
uN, uT are the normal and tangential displacements, rN, rT are
the normal and tangential stresses, [] represents the jump across
a contact edge, F > 0 is the coefficient of friction, and G P 0 is
as follows: for contact with Coulomb friction G = jrNj, for contact
with Tresca friction G > 0 is prescribed, and for frictionless contact
G = 0.

The friction law (2.2) can be expressed equivalently as follows
(see e.g. [22, p. 377]):

jrT j 6 FG; ½uT �ðjrT j � FGÞ ¼ 0; ½uT �rT 6 0 ð2:3Þ

or in complementarity (Kuhn–Tucker) form (see e.g. [48, p. 83]):

jrT j 6 FG; vTðjrT j � FGÞ ¼ 0; vT 6 0; ð2:4Þ

where vT = [uT]nT and nT = rT/jrTj. Clearly the relations (2.3) and
(2.4) are equivalent and express the fact that the absolute value
of the tangential contact stress is less than or equal to FG and, if this
value is attained, then tangential slip can occur in the direction
opposite to that of the frictional force. In the subsequent analysis,
the formulation (2.3) is employed, while the complementarity form
(2.4) will be useful for the numerical computations. For complete-
ness, a detailed proof of the equivalence between (2.2) and (2.3)
is given in Appendix A.

2.3. Loading conditions

The given system is subjected initially to a dead load (preload)
induced by the volume force fD over X and the boundary tractions
FB on CB � CE, CB – ;. Assuming that an optimal solution is already
known for the contact problem representing the system under the
preload, when additional (live) body forces kfL and boundary
tractions kFL are applied, the problem is to determine the range
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