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a b s t r a c t

This paper describes a new bi-level hierarchical method for optimizing the shape and member sizes of
both determinate and indeterminate truss structures. The method utilizes a unique combination of algo-
rithms that are organized hierarchically: the Fully Constrained Design (FCD) method for discrete sizing
optimization is nested within SEQOPT, a gradient-based optimization method that operates on continu-
ous shape variables. We benchmarked the method against several existing techniques using numerical
examples and found that it compared favorably in terms of solution quality and computational efficiency.
We also present a successful industry application of the method to demonstrate its practical benefits.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Engineers often are challenged to design steel truss structures
that are both economical and reliable. The design process involves
specifying each of the following three aspects of the structure: (i)
topology, which concerns the number and connectivity of mem-
bers; (ii) shape, which pertains to the location of structural join-
ts;and (iii) sizing, which involves defining member cross-sections
[1]. The specification of each aspect of the structure typically
corresponds to the three major stages of the engineering design
process as defined by Pahl and Beitz [2]: conceptual, embodiment
(design development) and detail. The topology of the structure is
typically identified during conceptual design based on the func-
tional requirements and architectural aesthetics, whereas the
structure’s shape and member sizing are determined during the
design development and detailed design phases, respectively.

This paper presents a bi-level hierarchical method with a un-
ique combination of algorithms to optimize the latter two aspects
of the structure – shape and sizing – given a fixed topology. The
objective of the optimization is to minimize the cost of the struc-
ture, while satisfying design performance requirements for safety
and serviceability. In this case, the cost of the structure is

estimated by multiplying the total steel weight by the price per
unit. Steel weight is commonly used as a proxy for cost, provided
that industry standard means and methods of construction are em-
ployed [3].

We treat shape variables as continuous in this investigation,
meaning that any value can be assumed within the specified limits
(e.g., allowing the depth of a truss to assume any value between,
for example, 900 and 1800 mm). Sizing variables, on the other
hand, are discrete, meaning that only certain specified values can
be assumed. This is consistent with industry practice where engi-
neers commonly select structural member sizes from a set of stan-
dard steel profiles that are mass-produced in specific sizes (e.g.,
W14 � 132, W14 � 120, etc.) [4]. Typically, there is a cost premium
and/or quantity requirement associated with using steel profiles
that do not conform to these standard sizes [5].

Traditionally, shape and sizing optimization has been an itera-
tive process that is performed manually by the engineer. The first
step in the process is usually to define the initial shape and sizing
configuration of the structure based on architectural requirements,
engineering rules of thumb, and past experience. Next, an analyti-
cal model is created that includes an idealized representation of
the structure’s topology, shape, member sizes, and loading. The
analytical model is used to calculate the structure’s response to
the defined loading (e.g., forces, deflections). These responses are
then checked against the design requirements for safety and
serviceability. Finally, the engineer reviews the results and may
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elect to modify either the shape of the structure or the sizes of con-
stituent members.

The number of possible shape and sizing configurations for a gi-
ven design problem is termed the design space [6]. The size of the
design space is an exponential function of the number of design
variables and the number of possible choices for each variable.
For example, a problem with x variables and n discrete choices
per variable has n[x] possible configurations. The size of the design
space for most problems encountered in industry is so large that it
is impractical to explore all possible design alternatives [7]. Engi-
neers using the manual methods described above customarily have
time to evaluate only a few design alternatives [8]. Vast areas of
the design space are, therefore, left unexplored even though they
may contain better performing shape and sizing configurations [9].

Numerous formal optimization methods have been developed
to improve upon traditional approaches by reducing design itera-
tion time, thereby enabling the evaluation of a greater number of
design alternatives that can lead to better quality solutions. The
majority of formal methods surveyed consider only member sizing
design variables [10]. The inherent coupling between size and
shape variables, however, makes it more advantageous to consider
both variable types simultaneously [11]. In Section 2, we survey
existing shape and sizing optimization methods and discuss their
respective strengths and limitations with regard to generality
and efficiency.

The goal of the research presented in this paper was to develop
a formal optimization method that (i) can generally be applied to
problems with a mix of discrete sizing and continuous shape
variables and (ii) efficiently handles large variable sets that are
typically encountered in industry. To achieve these objectives,
the proposed method employs different optimization algorithms
to operate on discrete sizing and continuous shape variables as
discussed in Section 3. In Section 4, we benchmark this unique
combination of algorithms against other leading approaches using
two standard numerical examples. In Section 5, we present a
successful industry implementation of the method on two large
stadium roof trusses. Finally, in Section 6 we summarize the
lessons learned and discuss the method’s suitability for general
industry application.

2. Shape and sizing optimization

Methods for shape and sizing optimization of trusses and
frames generally can be categorized as either single-level or multi-
level depending upon how the problem is decomposed.

2.1. Single-level methods

Most structural optimization methods described in the litera-
ture are single-level approaches because a single optimization
algorithm is used to operate on shape and sizing variables simulta-
neously. Although the analysis may be distributed, all design deci-
sions are made by a single optimization algorithm. Both
deterministic and heuristic single-level methods are described
and their respective limitations discussed below.

The deterministic methods that have received the most atten-
tion in the research community are stress-ratio (or fully stressed
design), linear programming, nonlinear programming, and branch
and bound methods [12]. The stress-ratio method seeks to propor-
tion each member of a structure so that it is loaded to the
maximum safe performance limit under the action of at least one
of the applied load cases. This approach is applicable to stress
and local buckling constrained structures. While the solution
quality of the stress-ratio method has been shown to be sub-opti-
mal and highly dependent on the start point of the optimization

process [13,14], the method has been widely adopted in profes-
sional practice due to its simplicity in concept and implementa-
tion. The stress-ratio method may be considered to be part of the
optimality criterion approach to structural design, and this more
general concept has been the subject of considerable research for
many years [15–17].

Linear programming was first applied to unconstrained shape
and sizing optimization problems involving plane trusses subject
to a single loading case [18]. A penalty function method was later
developed and successfully applied to various constrained truss
problems considering a cost objective function [19]. Sequential
Linear Programming (SLP) methods have been applied to problems
with multiple load cases and constraints on eigenfrequencies [20].
Linear programming approaches, however, result in severe approx-
imation errors when applied to problems with nonlinear responses
[21]. To reduce these errors, researchers developed an augmented
Lagrange multiplier method that utilizes second order Taylor series
expansions to express stress and displacement quantities in terms
of shape and sizing variables [22,23]. The efficiency of the method
was later improved by using Taylor series expansions to approxi-
mate forces, rather than stresses and displacements [11].

The deterministic methods described above require the first
derivative of the objective and constraint functions with respect
to the design variables. Therefore, these methods are not readily
applicable to problems where the objective and/or constraint func-
tions are discontinuous or are not easily expressed in terms of the
design variables [24]. These methods also assume continuity of the
design variables. When a discrete solution is required, approxima-
tion techniques are used to generate discrete variable values from
the continuous results. Researchers have shown that these approx-
imations can result in solutions that are sub-optimal or even infea-
sible [21].

The classical branch and bound method was originally devel-
oped for linear problems [25], but has been subsequently adapted
to nonlinear problems [26]. Compared to the techniques discussed
above, this method is known to generate superior quality solutions
at the expense of computational efficiency [27]. Various ap-
proaches for approximating structural responses have been tested
to improve the computational efficiency of the method, but branch
and bound remains more expensive than comparable deterministic
approaches [27,28].

In recent years, there has been significant research on the appli-
cation of heuristic techniques to structural shape and sizing prob-
lems, including genetic algorithms [24,29–31], simulated
annealing [32], and evolutionary strategies [33]. These methods
are capable of handling both discrete and continuous variables
simultaneously, and there is no limitation on the continuity of
the search space. Researchers have also demonstrated that heuris-
tic techniques such as genetic and evolutionary algorithms can be
applied to conceptual structural design problems involving topol-
ogy as well as shape and sizing variables [34,35]. These combined
topology, shape and sizing methods allow for human input to
guide the optimization by manipulating the algorithm parameters
during the iterative design generation and analysis process. A dis-
advantage of these heuristic methods is that they compare unfa-
vorably to the deterministic methods discussed above in terms of
computational efficiency [36].

2.2. Multilevel methods

Multilevel formulations employ more than one optimization
algorithm, with each algorithm operating on a specific set of vari-
ables. Relatively few multilevel methods have been applied to opti-
mize the shape and sizing of truss and frame structures.
Vanderplaats and Moses developed the alternating gradient
method [37] that decomposes the problem into two separate, but
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