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a b s t r a c t

In this work, we present a new formulation of a 3D beam element, with a new method to describe the
transversal deformation of the beam cross section and its warping. With this new method we use an
enriched kinematics, allowing us to overcome the classical assumptions in beam theory, which states that
the plane section remains plane after deformation and the cross section is infinitely rigid in its own plane.
The transversal deformation modes are determined by decomposing the cross section into 1D elements
for thin walled profiles and triangular elements for arbitrary sections, and assembling its rigidity matrix
from which we extracts the Eigen-pairs. For each transversal deformation mode, we determine the cor-
responding warping modes by using an iterative equilibrium scheme. The additional degree of freedom in
the enriched kinematics will give rise to new equilibrium equations, these have the same form as for a
gyroscopic system in an unstable state, these equations will be solved exactly, leading to the formulation
of a mesh free element. The results obtained from this new beam finite element are compared with the
ones obtained with a shell model of the beam.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The classical beam theories are all based on some hypothesis
that are sufficient in most cases for structure analysis, but fail in
more complex cases to give accurate results and can lead to non-
negligible errors. For Timoshenko beam theory, widely used by
structural engineers, two assumptions are made, the cross section
remains plane after deformation and every section is infinitely ri-
gid in its own plane, this means that the effects of warping shear
lag and transversal deformation are neglected, these phenomenon
are important in bridge study, especially when dealing with bridge
with small width/span ratio, and with thin walled cross section.

The problem of introducing the warping effect into beam theory
has been widely treated. The most classical approach is to intro-
duce extra generalized coordinates, associated with the warping
functions calculated from the Saint–Venant solution, which is ex-
act for the uniform warping of a beam, but gives poor results in
the inverse case, especially near the perturbation where the warp-
ing is restrained. Bauchau [1], proposes an approach that consists
in improving the Saint–Venant solution, that considers only the
warping modes for a uniform warping, by adding new eigenwar-
ping modes, derived from the principle of minimum potential en-
ergy. Sapountzakis and Mokos [2,3] calculate a secondary shear
stress, due to a non-uniform torsion warping, this can be consid-
ered as the derivation of the second torsion warping mode in the

work of Ferradi et al. [4], where a more general formulation is
given, based on a kinematics with multiple warping eigenmodes,
obtained by considering an iterative equilibrium scheme, where
at each iteration, equilibrating the residual warping normal stress
will lead to the determination of the next mode, this method has
given very accurate results, even in the vicinity of a fixed end
where the condition of no warping is imposed.

The aim of this paper is to propose a new formulation, which not
only takes into account the warping of the cross section, but also its
transversal deformation, an element of this type falls in the category
of GBT (generalized beam theory), which is essentially used to study
elastic buckling of thin walled beam and cold formed steel members
[5,6], this is done by enriching the beam’s kinematics with transver-
sal deformation modes, and then determining the contribution of
every modes to the vibration of the beam. In the formulation devel-
oped by Ferradi et al. [4], a series of warping functions are deter-
mined, associated to the three rigid body motions of horizontal
and vertical displacements and torsion, which can be considered
as the three first transversal deformation modes. The main idea of
this article is to go beyond these three first modes, and determine
a series of new transversal deformation modes, calculated for an
arbitrary cross section, by modeling this section with triangular
or/and 1D element, assembling its rigidity matrix and extracting
the eigenvalues and the corresponding eigenvectors, for a desired
number of modes. Then, for each determined mode, we will derive
a series of warping functions, noting that we will need at least one
to represent exactly the case of uniform warping in the beam. With
all these additional transversal and warping modes, we will obtain
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an enhanced kinematics, capable of describing accurately, arbitrary
displacement and stress distribution in the beam. Using the princi-
pal of virtual work we will derive the new equilibrium equations,
which appear to have the same form as the dynamical equations
of a gyroscopic system in an unstable state. Unlike classical finite
element formulation, where interpolation functions are used for
the generalized coordinates, we will perform for this formulation,
as in [4], an exact solution for the arising differential equations sys-
tem, leading to the formulation of a completely mesh free element.

The results obtained from the beam element will be compared
to those obtained from a shell (MITC-4) and a brick (SOLID186 in
Ansys™) model of the beam. Different examples are presented to
illustrate the efficiency and the accuracy of this formulation.

2. Determination of transversal deformation modes

For an arbitrary beam cross section, composed of multiple con-
tours and thin walled profiles, to calculate the transversal deforma-
tion mode, we use a mesh with triangular elements for the 2D
domain delimited by some contours and beam element for the thin
walled profiles. As for a classical structure with beam and shell ele-
ments, we assemble the rigidity matrix Ks for the section, by asso-
ciating to each triangular and beam element a rigidity matrix (see
Appendix A.1) calculated for a given thickness. We calculate the
eigenvalues and their associated eigenvectors of the assembled
rigidity matrix of the section, by solving the standard eigenvalue
problem (SEP):

K sv ¼ kv ð1aÞ

We note that for all that will follow, if it’s written in bold, a lower-
case letter means a vector and an uppercase letter means a matrix.

The strain energy associated to a transversal mode represented
by its Eigen-pair (k,v) will be given by:

U ¼ 1
2

vT Ksv ¼
1
2

kvTv ¼ 1
2

k ð1bÞ

Thus, the modes with the lowest eigenvalues mobilize less energy
and then have more chances to occur. From the resolution of the
SEP, in Eq. (1a) we obtain a set of vectors that we note
wi ¼ wi

y;w
i
z

� �
, where wi

y and wi
z are the vertical and horizontal

displacement, respectively, for the ith transversal deformation mode
(Figs. 1 and 2). We note that the three first modes with a zero eigen-
value, corresponds to the classical modes of a rigid body motion:

w1 ¼ ð1;0Þ; w2 ¼ ð0;1Þ; w3 ¼ ð�ðz� z0Þ; y� y0Þ ð2Þ

where (y0,z0) are the coordinates of the torsion center of the section.
In our formulation, the only conditions that needs to be satisfied

by the set of transversal modes functions, is that they are linearly
independent, not necessarily orthogonal. Thus, an important fea-
ture of our formulation is that any linearly independent set of func-
tions can be used to enrich our kinematics, the resolution of the
differential equation system, performed later, being completely
independent from the choice of the transversal and warping modes
functions. In our case, the condition of linear independency is sat-
isfied by construction, from the solution of the SEP by the well-
known Arnoldi iteration algorithm, implemented in ARPACK
routines.

In [7] the same method is used to determine the transversal
mode for a thin walled profile, with the difference that they use
a 3D Timoshenko beam for their section discretization, thus from
the resolution of the SEP they derive the transversal modes and
also their corresponding warping mode. We use here a different
approach for the determination of the first warping mode for each
transversal mode, based on the equilibrium of the beam element in
the case of uniform warping; the higher order warping modes will
be derived by using an iterative equilibrium scheme.

3. Determination of warping functions modes for a given
transversal mode

3.1. The first warping mode determination

We consider the kinematics of a beam element, where we in-
clude only one transversal deformation mode. We then write the
displacement vector d of an arbitrary point P of the section:

d ¼
up

vp

wp

8><
>:

9>=
>; ¼

up

fwy

fwz

8><
>:

9>=
>; ð3Þ

Fig. 1. Examples of transversal deformation modes for a thin walled profile I-section with 1D elements.

Fig. 2. Examples of transversal deformation modes for a rectangular section with triangular elements.
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