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a b s t r a c t

Dual methods based on sequential approximations are usually employed for solving topology optimiza-
tion problems. Among the approximation methods, the method of moving asymptotes (MMA) is perhaps
one of the most popular methods used for solving these problems (Svanberg, 1987) [1]. However, recent
investigations have shown poor performance of the MMA algorithm as compared to other approxima-
tions (Groenwold and Etman, 2010) [2]. In this paper we propose a two-point gradient based MMA
approximation, termed as TGMMA, to improve the performance of the MMA algorithm. Numerical results
demonstrate the efficiency of the TGMMA algorithm, which improves the MMA algorithm and also shows
better performance over other existing approximations.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Structural topology optimization is a mathematical process of
finding the optimal layout of prescribed amount of material within
a given domain, with the aim of optimizing desired performance
objectives. Topology optimization methods have been applied in
variety of applications including structural system design, automo-
bile manufacture, and space vehicle design [3–7], among others.
Optimization algorithms based on optimality criteria (OC) methods
[8,9] is one of the popular algorithms used in topology optimiza-
tion. A drawback of the OC methods is that it is not easy to handle
multiple constraints [10]. Alternative choice is using dual optimi-
zation methods based on sequential approximations, referred to
as dual sequential approximation (DSA) methods in this study.

A considerable amount of research has been done on DSA algo-
rithms after Schmit’s [11,12] first introduction of the approxima-
tion concepts for solving large scale structural optimization
problems. The main steps involved in the DSA methods are as fol-
lows (Fig. 1) [13]: (a) approximated sub-problem: starting with a
feasible design point, generate a convex and separable (local)
approximation of the primal objective function and constraints at
that design point; (b) dual function: compute the dual of the
sub-problem; (c) solve the dual problem; since the objective and
constraint functions in the sub-problem are convex, there is not
duality gap [14]; (d) update the design point and go to the next

iteration until the termination criteria is satisfied. The DSA
algorithms are well suited for topology optimization problems
where the number of design variables far exceeds the number of
constraints, and thus, working in dual spaces results in computa-
tional efficiency [15]. It has been recently shown that the well-
known OC method for topology optimization can be derived from
the DSA methods [10], and therefore, the DSA methods forms a
general class of algorithms that can be used for topology
optimization.

In the framework of DSA algorithms, the accuracy and efficiency
of the optimization scheme depends on the quality of the (approx-
imated) sub-problem. Thus, the formulation of effective and
accurate sub-problems is still one of the active areas of research
in structural optimization. In early studies, the approximations
were constructed using first-order truncated Taylor series
expansion (TSE) with intervening variables. For instance, Schmit
and Fleury [12] used linear and reciprocal approximations; convex
linearization (CONLIN) proposed by Fleury [16,17] employed a
combination of linear and reciprocal approximations depending
on the gradient signs at current design point. Svanberg [1] later re-
laxed the conservatism of CONLIN by adding and updating the
moving asymptotes at every iteration to create the well-known
method of moving asymptotes (MMA). Groenwold [10] used an
exponential approximation to develop algorithms for topology
optimization. These aforementioned local approximations can be
sometimes improved by history information from the previous
iterations. To this end, multi-point enhancement approaches are
sometimes employed, among which the two-point enhancement
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is widely used. For instance, Haftka et al. [18,19] suggested several
two-point methods such as modified reciprocal, two-point projec-
tion and an exponential approximation; Fadel et al. [20] proposed a
two-point exponential algorithm by matching the gradient of the
approximate sub-problem to the exact value at previous design
point; Wang and Grandhi [21] and Xu and Grandhi [22] proposed
two-point adaptive nonlinear approximation family by matching
both of the gradient and function value at the previous design
points.

To further improve the approximations, second-order or higher-or-
der TSE can be used. Higher-order TSE is more accurate than the first-
order TSE since it retains better curvature information at the design
point. However, higher than second-order TSE are seldom used be-
cause it is cumbersome to compute and store the higher-order deriv-
atives when solving large-scale problems. Fleury [23] showed that
replacing the fully populated Hessian by diagonal Hessian approxima-
tion may also improve the performance when using sequential qua-
dratic programming (SQP) for structural optimization problems.
However, for topology optimization problems the Hessian is approxi-
mated using the information from the first order derivatives at the de-
sign point as it is difficult to calculate the Hessian directly. In order to
improve the performance of second order approximations, Groenwold
[24] recently proposed an incomplete series expansion (ISE) family of
algorithms that are based on the diagonal approximation of the Hes-
sian using reciprocal and exponential approximations.

In order to use the DSA framework, the sub-problem should be
both convex and separable so that the dual function can be easily
computed [15]. The MMA algorithm constructs sub-problem that
satisfies these criteria, and is one of the most popular methods in
topology optimization. However, inferior performance of the
MMA algorithm has been reported for topology optimization prob-
lems when compared to other recently proposed algorithms based
on reciprocal, exponential and second order approximations [2,10].
In this paper, the performance of the MMA algorithm on topology
optimization problem is investigated, and enhancements to the
MMA algorithm for topology optimization are proposed using the
two-point gradient enforcement [20]. The improved algorithm is
referred to as two-point gradient based MMA (TGMMA). The
TGMMA provides a better local approximation than the MMA,
and is shown to alleviate the oscillations issues that existed in
the MMA algorithm. The performance of TGMMA is compared with
the other algorithms including reciprocal, two-point exponential,
MMA and second order methods. Optimal minimum compliance
and optimal compliant mechanism design problems are presented
to demonstrate the efficiency of the proposed TGMMA algorithm.
The outline of this paper is as follows: In Section 2 the framework
of DSA algorithm is presented. Section 3 describes the different
approximations used in topology optimization. The proposed
TGMMA algorithm is explained in Section 4, and performance eval-
uation of various algorithms is carried out in Section 5. Finally, the
important conclusions and remarks are given in Section 6.

2. Dual sequential approximation algorithm

2.1. Primal problem

A typical topology optimization problem with inequality con-
straints can be expressed as follows:

min
x2B

f0ðxÞ

Subject to :

gðxÞ 6 0
x 2 B ¼ fxjxl 6 x 6 xug � Rn

ð1Þ

where x 2 Rn is the design variable; f0ðxÞ : Rn ! R is the objective
function (compliance or any other quantity of interest) that needs

to be minimized; gðxÞ : Rn ! Rm are the m inequality constraints;
and xl and xu in the box constraints (Eq. (13)) define the lower
and upper boundary of the design variables, respectively.

2.2. Convex and separable primal sub-problem

In topology optimization problems, the objective function, the
constraints and their derivatives are obtained by numerical meth-
ods (e.g. finite element analysis) and their explicit expressions are
usually not available. Furthermore, in most optimization problems,
the objective and constraint functions are neither convex nor sep-
arable, and therefore, direct optimization methods are inefficient
for these problems [25]. Alternatively, DSA algorithms start with
the construction of convex and separable approximations of the
objective and constraint functions at the current design point xk,
and the primal problem is replaced with a sequence of approxi-
mate sub-problems. The approximated sub-problem is expressed
as follows:

min
x2B

f̂ k
0ðxÞ

Subject to :

ĝkðxÞ 6 0
x 2 B ¼ fxjxl 6 x 6 xug

ð2Þ

where f̂ k
0ðxÞ : Rn ! R and ĝkðxÞ : Rn ! Rm are the convex and

separable approximations of the primal objective function and
constraints, respectively, at the current design point xk. In the
sub-problem, we start with an initial guess xk, which is the optimal
design point of the last iteration. Defining as the dual optimizer,
consider the following mapping:

x̂kþ1 ¼ DðxkÞ ð3Þ

where the optimal solution x̂kþ1 of the sub-problem (Eq. (2)) can be
seen as the mapping D : xk ! x̂kþ1. With this mapping, the change
between optimized solution and initial input is:

Dxk ¼ x̂kþ1 � xk ð4Þ
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Fig. 1. DSA algorithm for solving topology optimization problem.
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