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a b s t r a c t

In this paper we propose an algorithm to compute specific parts of the dispersion curves for elastic wave-
guides. The formulation is based on an axisymmetric representation of the Scaled Boundary Finite Ele-
ment Method, where the wavenumbers of propagating modes are obtained as solutions of a
Hamiltonian eigenvalue problem. The novel solution procedure involves tracing selected modes over a
given frequency range and computing the corresponding solutions by means of inverse iteration. The
resulting algorithm is applied in the context of material characterization, where the efficiency of the com-
putation is crucial.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Ultrasonic guided waves offer a variety of applications in fields
such as non-destructive testing [1–3], structural health monitoring
[4–6] or material characterization [7–10]. Particularly, cylindrical
waveguides are of interest in many engineering applications. Due
to the complex dispersive behavior of guided waves, accurate mod-
eling of the propagating and/or evanescent modes is required.
Numerous analytical and numerical approaches have been devel-
oped over the last decades, in order to compute dispersion curves
and mode shapes for waveguides with different geometries and
varying distribution of material parameters. For instance, the
well-known Global Matrix Method [11–13], which uses the
Pochhammer–Chree theory [14,15], is based on the analytical
description of the partial waves being transmitted and reflected
at the waveguide’s surfaces. Most numerical approaches rest on
the concept of Finite Elements, by discretizing a representative
part of the waveguide [16] or the cross-section only. The latter ap-
proach, often referred to as Semi-Analytical Finite Element (SAFE)
method, has been applied to a variety of waveguides with different
geometries, boundary conditions and distribution of material
parameters, see e.g., [17–19]. Recently, it has been demonstrated
that the concept of the Scaled Boundary Finite Element Method
(SBFEM) can be employed to compute dispersion curves for arbi-
trary waveguides very efficiently [20–22]. The SBFEM is generally

a semi-analytical method [23–25]. The boundary of the domain
under consideration is discretized in the Finite Element sense
while analytical formulations are derived for the interior of the do-
main. This concept has been applied successfully for solving differ-
ent problems in time and frequency domain. Among other
applications this method has shown to be advantageous for the
simulation of elastic waves in bounded [26,27] and unbounded do-
mains [28–30]. Employing the SBFEM for the computation of dis-
persion curves for guided waves leads to the cross-section of the
waveguide to be discretized, similar to the SAFE method. The solu-
tion procedures described in [20–22] allow for a highly efficient
computation of wavenumbers, mode shapes and group velocities
of propagating modes in the waveguide. A standard eigenvalue
problem is solved at each frequency of interest. Utilizing spectral
elements of very high order [31] has shown to drastically improve
efficiency in comparison with traditional quadratic elements.

However, in many applications it is worthwhile to further im-
prove efficiency by considering the specific requirements of the
set-up. In the current contribution, we focus on an algorithm
developed for a measurement system that utilizes guided waves
for material characterization [10,32–34]. In this application, dis-
persion curves have to be computed for a large frequency range.
As the computation has to be performed many times with varying
material parameters, the efficiency of the algorithm is crucial. The
approach is based on an axisymmetric formulation of the SBFEM as
described in previous work [20,21]. In this paper, a novel solution
procedure is proposed in order to significantly increase its compu-
tational efficiency. Similar to many other applications of guided
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waves, only few modes can actually be excited at each frequency,
due to the geometrical characteristics of the excitation. In the pro-
posed approach, only the modes of interest are computed, rather
than solving for the complete set of solutions at each frequency.
This is done by tracing the selected modes [35] and computing
the required solutions using the concept of inverse iteration
[36,37]. In the current application we focus on homogeneous axi-
symmetric waveguides with isotropic or orthotropic material
behavior. However, the proposed algorithm can easily be adopted
to include more general waveguides.

The structure of the paper is as follows. In Section 2.1 we briefly
introduce the experimental set-up that motivates the development
of the novel solution procedure. Section 2.2 summarizes the gov-
erning equations and the SBFEM formulation as far as it is required
to explain the following steps. The solution procedure is developed
in Section 3. In Section 4 some aspects of the implementation are
described in more detail. Numerical examples are presented in Sec-
tion 5, also demonstrating efficiency and convergence behavior of
the proposed approach. A conclusion is given in Section 6.

2. Background

2.1. Motivation

The proposed algorithm is utilized in the context of ultrasonic
material characterization of cylindrical waveguides as presented in
[10,34,38]. The experimental set-up (Fig. 1a) consists of an ultra-
sonic transmitter, a hollow cylindrical waveguide and an ultrasonic
receiver. Measurements are performed in transmission between the
parallel faces. Fig. 1b shows an example for the pulse excited by the
transmitter and the resulting signal at the receiver. A plane-wave
approximation yields a first estimation of the material parameters.
The estimated values are used to initialize an inverse approach.
Using an optimization algorithm, the material parameters of the
waveguide are modified until the simulated and measured signals
are consistent. As the simulation of the waveguide’s dispersive
behavior has to be performed in every iteration of the optimization
process, an efficient and numerically stable waveguide model is de-
sired. To increase efficiency, we first have a closer look at the re-
quired waveguide modes to be computed. Due to the spatially
homogeneous excitation on the cylinder’s cross-section, only longi-
tudinal modes are propagating through the sample. If we model a
plane excitation of normal tractions on the cylinder’s cross-section,
e.g., using the reciprocity theorem [39,40] or a least-squares ap-
proach [10,34], we obtain the modal amplitude of each mode at a gi-
ven frequency. Fig. 2 shows typical results for a polymeric
waveguide consisting of natural polypropylene (PPN) with a longitu-
dinal wave velocity of cl ¼ 2:7 km/s and a Possion’s ratio of m ¼ 0:35.
The inner and outer radius is chosen as 3 mm and 9 mm, respec-
tively. Due to the symmetric and normal excitation, only modes

with a phase velocity close to cl will propagate in the waveguide.
Additionally, the spectral range of the transmitter defines the fre-
quency range of interest. It is interesting to note that (except for
the fundamental Mode L(0,0) at low frequencies) only modes with
a symmetric mode shape can be excited, as the modeled excitation
itself is symmetric. This prior knowledge of the waveguide modes
that can be excited using the given experimental set-up, will be uti-
lized to develop an efficient algorithm for computing the dispersive
behavior of a cylindrical waveguide.

2.2. SBFEM for cylindrical waveguides

In previous work, SBFEM formulations have been presented to
describe waveguides of different geometry and arbitrary distribu-
tion of material parameters [20–22]. In the current paper we focus
on homogeneous axisymmetric waveguides. Only the equations
required to develop the novel solution procedure are summarized
in this subsection. The hollow cylinder depicted in Fig. 3 is ad-
dressed. The geometry is described in a cylindrical coordinate sys-
tem ðz; h; rÞ. The inner radius and the thickness are denoted by ri

and l, respectively. To analyze the modes that can propagate in the
waveguide, we can assume the structure to be of infinite length. In
terms of the SBFEM, the discretization of the cross-section is scaled
between z ¼ 0 and z ¼ 1 with respect to a scaling center placed at
z ¼ �1. Since in the current application, the geometry as well as
the displacement field are axisymmetric, only the through-thick-
ness direction of the waveguide is discretized. Fig. 4 shows an
example for the discretization using one line element. The element
is defined in the local coordinate g, which equals �1 and 1 at the
element’s extremities, respectively.

In the current application we are only interested in longitudinal
modes, i.e., two degrees of freedom are assigned to each node of
the discretization and the displacements and stresses are

Fig. 1. (a) Experimental set-up for the material characterization of cylindrical waveguides and (b) example for a measured signal [34].

Fig. 2. Normalized modal amplitudes of the longitudinal modes in a hollow PPN
cylinder.
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