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a b s t r a c t

In this study, new models are derived to predict the peak time-domain characteristics of strong ground-
motions utilizing a novel hybrid method coupling artificial neural network (ANN) and simulated anneal-
ing (SA), called ANN/SA. The principal ground-motion parameters formulated are peak ground accelera-
tion (PGA), peak ground velocity (PGV) and peak ground displacement (PGD). The proposed models relate
PGA, PGV and PGD to earthquake magnitude, earthquake source to site distance, average shear-wave
velocity, and faulting mechanisms. A database of strong ground-motion recordings released by Pacific
Earthquake Engineering Research Center (PEER) is used to establish the models. For more validity verifi-
cation, the ANN/SA models are employed to predict the ground-motion parameters of a part of the data-
base beyond the training data domain. ANN and multiple linear regression analyses are performed to
benchmark the proposed models. Contributions of the input parameters to the prediction of PGA, PGV
and PGD are evaluated through a sensitivity analysis. The ANN/SA attenuation models give precise esti-
mations of the site ground-motion parameters. The proposed models perform superior than the single
ANN, regression and existing attenuation models. The optimal ANN/SA models are subsequently con-
verted into tractable design equations. The derived equations can readily be used by designers as quick
checks on solutions developed via more in-depth deterministic analyses.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction and background

Seismic hazard analysis is an essential step in engineering phase.
The seismological characteristics of earthquakes usually include
magnitude, distance, faulting type, and soil effects. Time-domain
and response-domain parameters are well-known engineering
parameters of an earthquake. Three major parameters of the
time-domain class are: (1) peak ground acceleration (PGA), (2) peak
ground velocity (PGV), and (3) peak ground displacement (PGD) [1].
The time and response-domain parameters can both be applied to
structural risk assessment. The spectral parameters are shown to
be more efficient than the time-domain parameters [2]. On the
other hand, the time-domain parameters are more practical due
to their independency from structures. Thus, PGA, PGV and PGD
are frequently used in seismic hazard studies. These key elements
can be predicted using different methods such as on-site investiga-
tion and physical modeling. In most cases, implementing these
methods is extensive, cumbersome and costly [1,3]. Much effort
should be made to describe limited observations through the phys-
ical modeling of an earthquake. The physical models are usually
developed in the context of stochastic modeling approach and ran-

dom vibration theory [4]. More advanced physical modeling meth-
ods simulate the realistic process of faulting through the numerical
analysis of crack and wave propagation [5].

An empirical approach to assess the ground-motion engineering
parameters is to use attenuation relationships. The attenuation
relationships play a key role in seismic hazard analysis. They often
correlate the ground-motion parameters with various independent
variables (e.g., earthquake magnitude, distance from source to site,
local site conditions, and earthquake source characteristics) [1,3,6].
It is not an easy task to develop a correlation between PGA, PGV
and PGD and the predictor variables due to high nonlinearity in
the relationships. Regression analysis is a conventional way to
build the attenuation relationships from the recorded strong mo-
tion data [7–10]. In this context, Fajfar and Perus [11] proposed a
non-parametric multidimensional regression method for the pre-
diction of the seismic ground-motion parameters. Perus and Fajfar
[12] used a non-parametric approach, called conditional average
estimator (CAE) method, for the ground-motion prediction. In
addition to physical aspects [5,13], the commonly used regression
analysis has major drawbacks related to the idealization of com-
plex processes, approximation, and averaging widely varying pro-
totype conditions. Also, the nature of the corresponding problem
should be pre-defined by a linear or nonlinear equation to perform
the regression analysis [1]. Thus, the derived attenuation models
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are often limited in their ability to efficiently simulate the complex
behavior of the ground-motion parameters [2]. The issues raised
above suggest the necessity of utilizing more robust methods to
predict the ground-motion parameters.

Empirical modeling by artificial intelligence techniques, such as
genetic programming (GP) and artificial neural networks (ANNs), is
a different approach to estimate the ground-motion characteristics.
Such methods have a great capability of adaptively learning from
experience and extracting various discriminators. Recently, Cevik
and Cabalar [14] utilized a branch of GP, namely gene expression
programming (GEP) to derive a greatly simplified prediction
equation for PGA upon a strong ground-motion data from Turkey.
Gandomi et al. [1] presented a hybrid method coupling GP and
orthogonal least squares, called GP/OLS, to derive new ground-mo-
tion prediction equations. Kerh and Chu [15] employed ANNs to
predict PGA at two main line sections of Kaohsiung Mass Rapid
Transit in Taiwan. Chu et al. [16] developed an ANN model to ana-
lyze the strong motion characteristics around the Kaohsiung area of
Taiwan. Kerh and Ting [17] used ANNs to predict PGA along a high-
speed rail system in Taiwan. Gullu and Ercelebi [3] and Gunaydin
and Gunaydin [18] developed prediction models for PGA using
ANNs upon a strong motion database from Turkey. Ahmad et al.
[19] established ANN-based attenuation relationships for PGA,
PGV and PGD using the European earthquake data. A major con-
straint in application of ANN is the network’s tendency to become
trapped in local minima [20]. To cope with this problem and to ob-
tain an optimal solution, a neural network may be trained using
global search algorithms such as genetic algorithms [21,22], tabu
search [23] and evolutionary strategies [24]. Simulated annealing
(SA) has also been used by researchers [25–27] for training ANNs
as an alternative to the more traditional local search algorithms
(e.g., gradient search techniques). Recently, Ledesma et al. [28]
combined ANNs and SA to make a hybrid algorithm with better effi-
ciency. They proposed a novel cooling schedule based on tempera-
ture cycling for implementing SA to improve the ANN training. It
was shown that the networks trained using temperature cycling
outperformed those trained by the conventional exponential or lin-
ear cooling schedules [28]. Despite remarkable prediction capabili-
ties of this hybrid ANN/SA method [28], there has not been yet any
scientific efforts directed at applying it to civil engineering tasks.

In this study, the ANN/SA technique is utilized to derive new
generalized attenuation relationships for PGA, PGV and PGD. The
employed hybrid system uses the SA strategy to assign good
starting values to the weights of the network before performing
optimization. ANN/SA is useful in deriving prediction models for
PGA, PGV and PGD by directly extracting the knowledge contained
in the experimental data. ANN-based models are commonly con-
sidered as black-box systems as they are unable to explain the
underlying principles of prediction. To overcome this limitation,
the optimal ANN/SA models are converted into relatively simple
design equations. A conventional calculation procedure is further
proposed based on the fixed connection weights and bias factors
of the best obtained structures. The predictions made by the
developed models are further compared with those provided by
the ANN, regression and empirical models [7,10,29]. The proposed
models are developed based on a comprehensive database of
strong ground-motions assembled by Pacific Earthquake Engineer-
ing Research Center (PEER) [30].

2. Methodology

2.1. Artificial neural network

ANNs have emerged as a result of simulation of biological ner-
vous system. The ANN method was founded in the early 1940s by

McCulloch and co-workers [31]. The first researches were focused
on building simple neural networks to model simple logic func-
tions. ANNs can be applied to a variety of problems without algo-
rithmic solutions or problems with complex solutions. ANNs
formulate a mathematical model for a system in which no clear
relationship is available between inputs and outputs. Multilayer
perceptron (MLP) network [32] is the most well-known class of
ANNs. MLPs have feed-forward architectures. They are essentially
capable of approximating any continuous function to an arbitrary
degree of accuracy [32]. These networks are usually applied to per-
form supervised learning tasks, which involve iterative training
methods to adjust the connection weights within the network
[33]. They are usually trained with back-propagation algorithm.
Fig. 1 shows a schematic representation of an MLP network. The
MLP network consists of an input layer, at least one hidden layer
of neurons and an output layer. Each of these layers has several
processing units and each unit is fully interconnected with
weighted connections to units in the subsequent layer. Each layer
contains a number of nodes. Every input is multiplied by the inter-
connection weights of the nodes [33]. Finally, the output (hj) is ob-
tained by passing the sum of the product through an activation
function as follows:

hj ¼ f
X

i

xiwij þ b

 !
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where f( ) is activation function, xi is the activation of ith hidden
layer node, wij is the weight of the connection joining the jth neuron
in a layer with the ith neuron in the previous layer, and b is the bias
for the neuron. For nonlinear problems, the sigmoid functions
(hyperbolic tangent sigmoid or log-sigmoid) are commonly adopted
as the activation function. Adjusting the interconnections between
layers will reduce the following error function [34,35]:
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where tn
k and hn

k are respectively the calculated output and the ac-
tual output value, n is the number of sample and k is the number
of output nodes. Further details of MLPs can be found in [32].

2.2. Simulated annealing

SA is a general stochastic search algorithm used for solving
optimization problems. This algorithm was first applied to optimi-
zation problems by Kirkpatrick et al. [36] and Cerny [37]. SA is very
useful for solving several types of optimization problems with non-
linear functions and multiple local optima [38,39]. SA makes use of
the Metropolis algorithm [38] for computer simulation of anneal-
ing. Annealing is a process in which a metal is heated to a high
temperature and thereafter it is gradually cooled to relieve thermal
stresses. During the cooling process, each atom takes a specific
position in the metal crystalline structure [40]. By changing the

Fig. 1. A schematic representation of an MLP neural network.
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