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In science and engineering, simulation models calibrated against a limited number of experiments are
commonly used to forecast at settings where experiments are unavailable, raising concerns about the
unknown forecasting errors. Forecasting errors can be quantified and controlled by deploying statistical
inference procedures, combined with an experimental campaign to improve the fidelity of a simulation
model that is developed based on sound physics or engineering principles. This manuscript illustrates
that the number of experiments required to reduce the forecasting errors to desired levels can be deter-
mined by focusing on the proposed forecasting metric.

Published by Elsevier Ltd.

1. Introduction

This manuscript is concerned with simulation models used to
forecast predictions in support of high-consequence decision-mak-
ing on the performance of engineering systems, i.e. in the context
of certification. Instead of relying on virgin models, i.e. models that
are not calibrated or bias-corrected, we envision certification to be
applied through a combined experimental and numerical cam-
paign that relies on simulation models calibrated and bias cor-
rected against experimental measurements. We are particularly
interested in the quantification and control of errors associated
with the forecasting predictions of these calibrated and bias cor-
rected simulation models.

In certification, the purpose of simulation models is to reduce
the number of required experiments, and is best illustrated by con-
sidering two extreme cases.

(1) Purely empirical certification: the absence of a sound simula-
tion model where certification is only obtained based on
experimental measurements.

(2) Purely model-based certification: the availability of a ‘perfect’
simulation model where certification needs practically no
experimental measurements.
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In a purely empirical approach, forecasting is commonly
achieved by constructing a function that best fits the discrete set-
tings of the calibration experiments. Then, the best-fitted function
is exercised to make forecasting predictions at untested settings.
Both the experimental uncertainty and the uncertainty in the
curve-fitting process can be considered by making forecasting pre-
dictions that are “best estimates” with quantified uncertainties. In
purely empirical certifications, the number of experiments neces-
sary to train the best-fitted function can rapidly become prohibi-
tive. Purely empirical certifications are further challenged with
the fact that experiments are typically time-consuming and expen-
sive and thus, even in the best cases are only available in limited
numbers. Moreover, obtaining the measurements at the desired
experimental settings may be prohibitive due to policy regulations
or simply infeasible due to technical limitations. This resulting
inevitable experimental scarcity is the primary reason behind the
increased reliance on modeling and simulation in various scientific
and engineering fields.

The availability of simulation models incorporating sound phys-
ics or engineering principles can significantly reduce the number of
required experiments for certification. In the most extreme exam-
ple, if the model can perfectly reproduce reality, the dependency
on experimentation can be eliminated altogether. However, simu-
lation models are naturally impaired by imprecise model parame-
ters (known unknowns) and inaccuracies in the interpretation of
the underlying physics or engineering principles (unknown un-
knowns). Therefore, experimental evidence is routinely required


http://dx.doi.org/10.1016/j.compstruc.2011.06.010
mailto:sez@clemson.edu
mailto:hemez@lanl.gov
mailto:bwilliams@lanl.gov
mailto:tome@lanl.gov
mailto:cu@lanl.gov
http://dx.doi.org/10.1016/j.compstruc.2011.06.010
http://www.sciencedirect.com/science/journal/00457949
http://www.elsevier.com/locate/compstruc

2378 S. Atamturktur et al./Computers and Structures 89 (2011) 2377-2387

to improve the simulation model fidelity. Hence, in model-based
certification, experiments are used to calibrate and bias-correct
the physics-based simulation model instead of training an arbi-
trary best-fitted function.

Model calibration is achieved through the comparison of a co-
hort of model predictions with a family of experimental measure-
ments. This comparison has two main objectives: (1) to reduce the
uncertainty in the imprecise input parameters (known unknowns)
and (2) to estimate the errors due to inadequate or missing physics
(unknown unknowns). The manner in which we distinguish be-
tween these two interrelated objectives, parameter calibration ver-
sus discrepancy bias, is explained in Section 2 by a simple example.

The number of experiments needed to successfully achieve
these two objectives of model calibration is heavily dependent
upon the fidelity of the modeled physics and engineering princi-
ples to reality. If the simulation model lacks a vital principle,
parameter, or interaction between principles or parameters in its
formulation (i.e., large unknown unknowns), the fundamental abil-
ity of this model to capture the phenomena of interest is compro-
mised. Indeed, attempts to improve the fidelity of an overly crude
simulation model through an experimental campaign and model
calibration would fail to yield satisfactory results. Hence, a crucial
first step in certification involves assessing the suitability of a sim-
ulation model for use in forecasting. In Section 3, we outline three
important assertions that we contend play a foundational role in
determining the suitability of simulation models for forecasting.

Because the purpose of simulation models is to predict in lieu of
experiments, such models calibrated against a reduced number of
experimental measurements are routinely applied to forecast at
untested settings, which brings up the issue of unknown forecasting
errors. However, these unknown forecasting errors can be reduced
by model calibration which improves the fidelity of the simulation
model through parameter calibration (known unknowns) and bias-
correction (unknown unknowns). Naturally, as the number of
experimental measurements available for model calibration is con-
sistently increased, the forecasting errors would be consistently re-
duced. Once a sufficient number of experiments are obtained, and
the forecasting errors are reduced to desired levels, allocating re-
sources to experimentations would have diminishing returns;
thusly allocating further resources to experiments would not be
justified. In Section 4, we explain our approach to estimating the
forecasting errors of a given simulation model for a given experi-
mental campaign. Estimating forecasting errors is of particular
importance in science and engineering, especially when such fore-
casts are used to determine the expected performance level of an
engineering system under worst-case scenarios. Such applications
are common in the context of certification.

In this manuscript, we illustrate both our approach (1) for esti-
mating forecasting errors for a given set of experimental measure-
ments (Section 5) and (2) for determining the quantity of
experimental measurements required to assess the usefulness of
a simulation model and to reduce forecasting errors to the desired
levels (Section 6). In Sections 5 and 6, we illustrate the merit of this
procedure using two distinct material models representing data-
rich and data-poor situations. Compelling as this approach is, a
set of premises must be satisfied for the proposed approach to be
applicable. In Section 7, we discuss the underlying premises and
limitations of the proposed approach.

2. Estimation of model discrepancy

The central philosophy of model calibration is to improve the
accuracy of model predictions by exploiting a collection of avail-
able experimental measurements. Thus, model calibration invari-
ably requires the comparison of large numbers of simulation

runs against experimental measurements. Over the past two dec-
ades, model calibration has evolved into two strategies, which dif-
fer in the methods through which they improve model accuracy.
The first type is the parameter calibration approach that captures
the inaccuracy of the model parameters. The second type is the
bias correction approach that captures the inadequacy of the phys-
ics model. These two fundamental concepts are combined together
in the landmark study of Kennedy and O’Hagan [1]. Kennedy and
O’Hagan'’s [1] approach can simultaneously calibrate model param-
eters and correct discrepancy bias.

The parameter calibration approach has two distinct paradigms
used for defining the improved parameter values. In the first ap-
proach, calibration is considered as an optimization problem. The
objective function, which constitutes some form of the disagree-
ment between the experimental measurements and model predic-
tions, is minimized over a subset of model parameters
appropriately selected based on their uncertainty and sensitivity. If
uncertainty in the experimental measurements and numerical pre-
dictions are included, the problem becomes calibration under uncer-
tainty. The second approach to calibration is Bayesian inference,
which explicitly acknowledges the uncertainty in the model param-
eters. In Bayesian inference, calibration is achieved by reducing the
uncertainty in the models parameters and in turn reducing the
uncertainty in the model output. Therefore, Bayesian inference is
considered to be more refined in the way it handles uncertainty,
compared to optimization-based procedures and thus is preferred
for the present study.

The present manuscript adopts a Bayesian implementation of
Kennedy and O’Hagan’s method [1]. This implementation, derived
from Higdon et al. [2], is built into a computer code called Gaussian
Process Model - Simulation Analysis (GPM-SA) at the Los Alamos
National Laboratory. It is deeply rooted in the following relation:

Yobs (X) = Ysim (X, 0) + 0(x) + &(X) (1)

In Equation (1), the parameter x denotes the controlled variables.
One must be careful not to mix control parameters with calibration
parameters, denoted by 6 in Equation (1). Control parameters,
which can be controlled during experiments, define the domain of
applicability. Calibration parameters on the other hand are either
introduced by specific choices of assumptions or models, or they
represent parameters that cannot be measured or controlled
experimentally.

In Equation (1), ysin(x, 0) corresponds to the model predictions,
&(x) corresponds to a discrepancy bias that represents the system-
atic bias, and ¢(x) represents the random experimental error. When
these three terms are added together, they yield our best estimate
for the “truth”, y,ps(x) over the various settings of x in the domain
of applicability. To reiterate Equation (1), if the discrepancy bias
associated with a simulation model is known, the truth, y,ps(x)
can be computed by correcting model predictions, ygm(x, 0) with
the discrepancy bias 4(x).

One of the primary roles of experimental measurements is to
supply information about the discrepancy bias at discrete points
within the domain of applicability. We now introduce another
term, x‘, which denotes the control parameter settings where the
experimental measurements are available.

j/obs (X[) ~ Yobs (xt) (2)

With the formulation of Equation (1), one seeks to obtain the prob-
ability distribution of calibration parameters, 0 by comparing model
predictions yops(x", 0), to physical observations y,s(x") while simul-
taneously making an independent estimate for the discrepancy bias,
3(x"). As seen, the discrepancy bias is fundamentally different than
the commonly adapted concept of “goodness-of-fit.”

Below is a conceptual example explaining the difference be-
tween goodness-of-fit and discrepancy bias. Fig. 2 illustrates the
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