Mathematical Social Sciences 87 (2017) 55-63

Contents lists available at ScienceDirect

Mathematical Social Sciences

journal homepage: www.elsevier.com/locate/econbase

Minimal extending sets in tournaments

@ CrossMark

Felix Brandt**, Paul Harrenstein ”, Hans Georg Seedig?

2 TU Miinchen, Germany
b University of Oxford, United Kingdom

HIGHLIGHTS

e ME satisfies idempotency, irregularity, and inclusion in the iterated Banks set.
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Tournament solutions play an important role within social choice theory and the mathematical social
sciences at large. In 2011, Brandt proposed a new tournament solution called the minimal extending
set (ME) and an associated graph-theoretic conjecture. If the conjecture had been true, ME would have
satisfied a number of desirable properties that are usually considered in the literature on tournament
solutions. However, in 2013, the existence of an enormous counter-example to the conjecture was shown
using a non-constructive proof. This left open which of the properties are actually satisfied by ME. It
turns out that ME satisfies idempotency, irregularity, and inclusion in the iterated Banks set (and hence
the Banks set, the uncovered set, and the top cycle). Most of the other standard properties (including
monotonicity, stability, and computational tractability) are violated, but have been shown to hold for all
tournaments on up to 12 alternatives and all random tournaments encountered in computer experiments.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Many problems in the mathematical social sciences can be
addressed using tournament solutions, i.e., functions that associate
with each connex and asymmetric relation on a set of alternatives
a non-empty subset of the alternatives. Tournament solutions are
most prevalent in social choice theory, where the binary relation
is typically assumed to be given by the simple majority rule
(e.g., Moulin, 1986; Laslier, 1997). Other application areas include
multi-criteria decision analysis (e.g., Arrow and Raynaud, 1986;
Bouyssou et al., 2006), zero-sum games (e.g., Fisher and Ryan,
1995; Laffond et al., 1993; Duggan and Le Breton, 1996), and
coalitional games (e.g., Brandt and Harrenstein, 2010).

Examples of well-studied tournament solutions are the
Copeland set, the uncovered set, and the Banks set. A common
benchmark for tournament solutions is which desirable properties
they satisfy (see, e.g., Laslier, 1997; Brandt et al,, 2016, for an
overview of tournament solutions and their axiomatic properties).
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In 2011, Brandt (2011) proposed a new tournament solution
called the minimal extending set (ME) and an associated graph-
theoretic conjecture, which weakens a 20-year-old conjecture
by Schwartz (1990). Brandt’s conjecture is closely linked to the
axiomatic properties of ME in the sense that if the conjecture had
held, ME would have satisfied virtually all desirable properties that
are usually considered in the literature on tournament solutions.
In particular, it would have been the only tournament solution
known to simultaneously satisfy stability and irregularity. In
2013, however, the existence of a counter-example with about
1019 3lternatives was shown.! The proof is non-constructive and
uses the probabilistic method (Brandt et al., 2013). This counter-
example also disproves Schwartz’s conjecture and implies that the
tournament equilibrium set - a tournament solution proposed by
Schwartz (1990) - violates most desirable axiomatic properties.’

1 The bound is (2;05) < 10", The weaker bound of 10'3® mentioned by Brandt

15
et al. (2013) stems from the estimate (%) < 215,
2 significantly smaller counter-example for Schwartz’s conjecture consisting of
only 24 alternatives was subsequently found by Brandt and Seedig (2013). However,
this counter-example does not constitute a counter-example to Brandt’s conjecture.
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This left open which of the properties are actually satisfied by
ME. In this paper, we resolve these open questions. In particular,
we show that ME fails to satisfy monotonicity, stability, and
computational tractability while it does satisfy a strengthening of
idempotency, irregularity, and inclusion in the (iterated) Banks
set.> Our negative theorems for monotonicity and stability are
based on the non-constructive existence proof by Brandt et al.
(2013). Concrete tournaments for which ME violates any of these
properties therefore remain unknown.

2. Preliminaries

A tournament T is a pair (A, >), where A is a finite set of
alternatives and > a binary relation on A, usually referred to as
the dominance relation, that is both asymmetric (a > b implies not
b > a) and connex (a # b impliesa > bor b > a). Thus, the
dominance relation is generally irreflexive (not a > a). Intuitively,
a > b signifies that alternative a is preferable to alternative b and
we denote this by an edge from a to b in our figures. The dominance
relation can be extended to sets of alternatives by writing A > B
whena > bforalla € Aand b € B.We also writea > Bfor {a} > B.
Moreover, for a subset of alternatives B C A, we will sometimes
consider the restriction of the dominance relation >z => N(B x B)
and write T g for (B, >g). The order |T| of a tournamentT = (A, >)
refers to the cardinality of A. The set of all linear orders on some
set A is denoted by £(A). Define the set of all transitive subsets
of atournament T as Br = {Q € A : > € £L(Q)} whereas
Br(a) = {Q € Br : a > Q} denotes the set of all transitive subsets
that a dominates. In such a case, a extends Q, implying Q U{a} € Br.

A tournament solution is a function S that maps a tournament
T = (A, >) to a nonempty subset of its alternatives. We write
S(B) instead of S(T|g) whenever the tournament T is clear from
the context.

Choosing from a transitive tournament is straightforward be-
cause every transitive tournament - and all of its subtournaments
- possess a unique maximal element. In other words, the core of
the problem of choosing from a tournament is the potential intran-
sitivity of the dominance relation. Clearly, every tournament con-
tains transitive subtournaments. For example, all subtournaments
of order one or two are trivially transitive. Based on these obser-
vations, it seems natural to consider inclusion-maximal transitive
subtournaments and collect their maximal elements in order to de-
fine a tournament solution. This tournament solution is known as
the Banks set.*

Formally, the Banks set BA(T) of a tournament is defined as

BA(T) ={a € A: 3B € Br(a) such that #b: b > BU {a}}.

In many cases, the Banks set contains all alternatives of a
tournament. Since there are tournaments T for which BA(BA(T)) ¢
BA(T), one can define a series of more discriminating tournament
solutions by letting BA'(T) = BA(T) and BA* = BA(BA*~!(T)) for
all k > 1. The iterated Banks set BA*°(T) of a tournament T is then
defined as

BA®(T) = ﬂ BAK(T).
keN

Due to the finiteness of T, BA°(T) = BAT/(T), and BA™ is a well-
defined tournament solution.

3 Previously, the two statements on computational tractability and inclusion in
the Banks set were only known to hold if the (now disproved) conjecture had been
true.

4 Banks's original motivation was slightly different as his aim was to characterize
the set of outcomes under sophisticated voting in the amendment procedure
(Banks, 1985).

Fig. 1. Inthistournament, ME(T) = {a, b, d} whereas BA(T) = {a, b, c, d}. Omitted
edges point downwards.

Generalizing an idea by Dutta (1988), which in turn is based on
the well-established notion of von-Neumann-Morgenstern stable
sets in cooperative game theory, Brandt (2011) proposed another
method for refining a tournament solution S by defining minimal
sets that satisfy a natural stability criterion with respect to S.°> A
subset of alternatives B € A is called S-stable for tournament
solution S if

agS(BU{a}) forallae A\B.

Since S(BU {a}) = {a} if B = 0, it follows that S-stable sets can
never be empty. It has turned out that BA-stable sets, so-called
extending sets, are of particular interest because they are strongly
related to Schwartz’s tournament equilibrium set and because
they can be used to define a tournament solution that potentially
satisfies a number of desirable properties. An extending set is
inclusion-minimal if it does not contain another extending set. Since
the number of alternatives is finite, inclusion-minimal extending
sets are guaranteed to exist. The union of all inclusion-minimal
extending sets defines the tournament solution ME (Brandt, 2011),
ie,

ME(T) = U{B : Bis BA-stable and no C C B is BA-stable}.

Example 1. Consider the tournament T in Fig. 1. It is easy to verify
that the maximal transitive sets in T are {a, b, c}, {a, e, b}, {a, c, e},
{b,c,d},{c,d,e},and {d, a, e}. {e, b} (the only nontrivial transitive
subset with e as maximal element) is extended by a. Therefore, we
have BA(T) = {a, b, c, d}.

We claim that ME(T) = {a, b, d}. To this end, let B be any
extending set of T. Assume that a ¢ B. Since B is non-empty
and stable with respect to g, it must be the case that d € B.
Then, b has to be contained in B as well because no alternative
could extend {b, d}. But then B cannot be stable with respect to
a as there exists no alternative that could extend {a, b}. Therefore,
a € B and immediately d € B (as nothing could extend {d, a}) and
b € B (as nothing could extend {b, d}). It turns out that {a, b, d} is
already an extending set because ¢ ¢ BA{a, b, c, d} = {a, b, d} and
e & BA{a,b,d, e} = {a, b, d}. So, {a, b, d} is the unique minimal
extending set of T.

Note that ME(T) is strictly contained in BA(T). Tournament T
is the smallest tournament for which this is the case (Brandt et al.,
2015). For this particular tournament, ME (T) and BA* (T) coincide.

We will show in Section 4.3 that
ME(T) € BA™(T) C BA(T)
holds for all tournaments T and both inclusions may be strict.®

5 Awell-known example is the minimal covering set, which is the unique minimal
set that is stable with respect to the uncovered set (Dutta, 1988).

6 An analogous inclusion chain is known for the uncovered set, the iterated
uncovered set, and the minimal covering set (see, e.g., Laslier, 1997).
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