
Mathematical Social Sciences 87 (2017) 85–91

Contents lists available at ScienceDirect

Mathematical Social Sciences

journal homepage: www.elsevier.com/locate/econbase

A simple method for generalized sequential compound options
pricing
Xiandong Wang a,b,∗, Jianmin He b

a Department of Mathematics and Applied Mathematics, Changzhou Institute of Technology, Changzhou 213032, China
b School of Economics and Management, Southeast University, Nanjing 211189, China

h i g h l i g h t s

• We derive and generalize a mathematical expectation related to multivariate normal variables.
• The presented mathematical expectations are very useful for many types of options pricing.
• We propose a novel proof for sequential compound options pricing formula in the diffusion model.
• Analytic pricing formula for sequential compound options in the jump-diffusion model is obtained.
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a b s t r a c t

This paper presents a new and simple method to derive the pricing formula for generalized sequential
compound options (SCOs). Multi-fold generalized SCOs are defined as compound options on (compound)
options, where the call/put property of each fold can be arbitrarily assigned. To obtain the analytic
pricing formula for n-fold generalized SCOs, we prove and generalize a mathematical expectation related
to multivariate normal variables, which are potentially very useful in pricing many types of option.
Subsequently, with the help of the proven conclusions, the n-fold generalized SCOs pricing formulas
for the diffusion model and the log-normal jump-diffusion model are derived. Finally, some possible
computational methods for the calculation of SCOs price are presented.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Compound options are options that have other options as un-
derlying assets. Geske (1979) first presented the original closed
form pricing formula for 2-fold compound options using a par-
tial differential equation method and this paper set precedent for
later works. Since then, some scholars have extended the pricing
model and proposed some new pricingmethods for compound op-
tions. For example, Agliardi and Agliardi (2003) generalized the re-
sults to 2-fold compound calls with time-dependent parameters.
Lajeri-Chaherli (2002) used the martingale approach and the ex-
pectation of truncated bivariate normal variables to prove the pric-
ing formula for 2-fold compound options. Fouque and Han (2005)
proposed a perturbation approximation to compute the prices of
compound options. Gukhal (2004) derived analytical valuation for-
mulas for 2-fold compound options when the underlying value
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follows a log-normal jump-diffusion process. Chiarella and Kang
(2011) presented the evaluation of American compound option
prices under stochastic volatility and stochastic interest rates.
Griebsch (2013) evaluated European compound option prices
under stochastic volatility using Fourier transform techniques.
Chiarella et al. (2014) provided an in-depth analysis of several
structurally different methods to numerically evaluate European
compound option prices under Heston’s stochastic volatility dy-
namics. In addition, some examples in the literature have devel-
oped 2-fold to n-fold compound options, and studied the pricing
and sensitivity analysis for the n-fold compound options. Specific
multi-fold compound option pricing formulas have been proposed
by Geske and Johnson (1984) and Carr (1988), while the pricing
formula of sequential compound call options (SCCs) was proved
by Thomassen and Van Wouwe (2001) and Chen (2003). Agliardi
and Agliardi (2005) derived the closed-form solution formulti-fold
compound calls when volatility and interest rate vary with time.
Andergassen and Sereno (2012) presented the n-fold SCCs pricing
formula in the jump-diffusion model. Lee et al. (2008) were the
first to extend the sequential compound call options to generalized

http://dx.doi.org/10.1016/j.mathsocsci.2017.03.001
0165-4896/© 2017 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.mathsocsci.2017.03.001
http://www.elsevier.com/locate/econbase
http://www.elsevier.com/locate/econbase
http://crossmark.crossref.org/dialog/?doi=10.1016/j.mathsocsci.2017.03.001&domain=pdf
mailto:wxd.06@163.com
http://dx.doi.org/10.1016/j.mathsocsci.2017.03.001


86 X. Wang, J. He / Mathematical Social Sciences 87 (2017) 85–91

sequential compound options (SCOs) and presented the pricing
formula and sensitivities for sequential compound options. The
multi-fold sequential compound options proposed in Lee et al.
(2008) are defined as compound options on (compound) options
where the call/put property of each fold can be arbitrarily assigned.

Compound option is widely employed in the field of financial
derivatives pricing, for instance, American put options (Geske and
Johnson, 1984; Gukhal, 2004), sequential exchange options (Carr,
1988), as well as sequential American exchange property options
(Paxson, 2007). In addition to the pricing of financial derivatives,
compound option theory is extensively used in the real option
field. Examples include project valuation (Cassimon et al., 2011,
2004; Pennings and Sereno, 2011; Nigro et al., 2014; Huang and
Pi, 2009), decision-making (Park et al., 2013), and banking crisis
(Maltritz, 2010; Eichler et al., 2011). Compound options also play
an important theoretical role in completing markets (Nachman,
1989; Arditti and John, 1980; Green and Jarrow, 1987).

The motivation of this paper are as follows. First, the wide
deployment of financial derivatives in the real options field have
revealed that the limitations of the current compound option
methodology which is based on 2-fold compound options, or
the results concerning multi-fold compound options so far have
focused only on sequential compound calls. In the realworld,many
cases can be expressed in terms of options, such as expansion,
contraction, shutting down, abandon, switch, and/or growth, so
the generalized SCOs may be a very useful instrument to treat
many real-world cases. An example quoted in Lee et al. (2008) is
that the effect of revenue guarantee in a build–operate–transfer
(BOT) project of utility construction can be evaluated by SCOs.
Second, although Lee et al. (2008) have presented the analytic
pricing formula for generalized sequential compound options, it is
not hard to find that even in the most simple model, i.e., diffusion
model, the derivation for analytic pricing formula is quite complex.
We can imagine that it will be a very difficult thing to derive the
pricing formula for generalized sequential compound options in
complex models, such as jump-diffusion model and Levy model.
Therefore, we should seek somenew and simplemethods to obtain
the pricing formula for generalized sequential compound options.

Undoubtedly, the sophisticated structure of sequential com-
pound options necessarily leads to some difficulties in the deriva-
tion of the pricing formula. As far as we know, only Lee et al. (2008)
have derived the pricing formula and sensitivity analysis for gen-
eralized sequential compound options in the diffusion model with
the deterministic time-dependent parameters.With the help of the
relationship between the (k − 1) and k-variate normal integrals,
Lee et al. (2008) used the risk-neutral pricing method to derive
the pricing formula for multi-fold SCOs by induction. In this pa-
per, in order to obtain the analytic pricing formula for n-fold gener-
alized SCOs, we prove and generalize a mathematical expectation
about multivariate normal variables, by means of the conclusions
we derive the n-fold sequential compound options pricing formula
under the assumption that the underlying asset price follows a
diffusion process and jump-diffusion process using the risk-
neutral method, respectively. The main contributions of this paper
are as follows. First, we generalize the mathematical expectation
related to multivariate normal variables which was firstly given in
Wang and He (2016). Second, we present a novel and alternative
proof for the generalized sequential compound options pricing for-
mula. Finally, this paper present a pricing formula for generalized
SCOs under the assumption that the underlying asset price follows
a log-normal jump-diffusion process. Therefore, the present paper
can be treated as a substantial generalization of Lee et al. (2008).

The rest of this paper is structured as follows. A mathemati-
cal expectation about multivariate normal variables and its gen-
eralization are proved in Section 2. Sections 3 and 4 present the
SCOs pricing formula in the diffusion and jump-diffusion models,

respectively. Some possible computational methods for SCOs price
are provided in Section 5. Conclusions are stated in Section 6.

2. A mathematical expectation related to multivariate normal
variables

In order to derive the mathematical expectation about multi-
variate normal variables, we give the succeeding Lemma 1 from
Wang and He (2016).

Lemma 1. Let Σ =

ωij

n×n be a symmetric and positive definite

matrix

Σ =


σ 2
1 ρ12σ1σ2 · · · ρ1nσ1σn

ρ12σ1σ2 σ 2
2 · · · ρ2nσ2σn

· · · · · · · · · · · ·

ρ1nσ1σn ρ2nσ2σn · · · σ 2
n

 . (1)

Then for any x1, x2, . . . , xn ∈ R,

(x1 − ρ1nσ1σn, x2 − ρ2nσ2σn, . . . , xn − σ 2
n )Σ−1

× (x1 − ρ1nσ1σn, x2 − ρ2nσ2σn, . . . , xn − σ 2
n )′

= (x1, x2, . . . , xn)Σ−1(x1, x2, . . . , xn)′ − 2xn + σ 2
n (2)

Lemma 2. Let n-variate normal random vector X ∼ N(0, Σ), where

X = (X1, X2, . . . , Xn)
′ (3)

and Σ is the covariance matrix of X , which is denoted as (1). That is,
the correlation matrix of X = (X1, X2, . . . , Xn)

′ is

A =

 1 ρ12 · · · ρ1n
ρ12 1 · · · ρ2n
· · · · · · · · · · · ·

ρ1n ρ2n · · · 1

 . (4)

Then for any constant c1, c2, . . . , cn, there is:

E(eXn I{X1


1 c1,X2


2 c2,...,Xn


n cn})

= e
σ2
n
2 Nn


△1

−c1 + ρ1nσ1σn

σ1
, △2

−c2 + ρ2nσ2σn

σ2
,

· · · , △n
−cn + σ 2

n

σn
;Q


(5)

where I(·) is an indicator function. The notation Λi denotes ‘‘≥’’ or
‘‘≤’’, and△i = 1 if Λi is ‘‘≥’’;△i = −1 if Λi is ‘‘≤’’, i = 1, 2, . . . , n.

Nn(x1, . . . , xn;Q ) =
1

(2π)
n
2 | Q |

1
2

×

 x1

−∞

· · ·

 xn

−∞

exp

−

1
2
(x1, . . . , xn)Q−1(x1, . . . , xn)′


dx1 · · · dxn (6)

is the n-variate standard normal distribution functionwith correlation
matrix,

Q =

 1 △12 ρ12 · · · △1n ρ1n
△12 ρ12 1 · · · △2n ρ2n

· · · · · · · · · · · ·

△1n ρ1n △2n ρ2n · · · 1

 (7)

and △ij = △i × △j, i, j = 1, 2, . . . , n.

Proof. Let x = (x1, x2, . . . , xn)′, b = (ρ1nσ1σn, ρ2nσ2σn, . . . ,
σ 2
n )′,D = {x|x1Λ1c1, x2Λ2c2, . . . , xnΛncn}. By the expectation of
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